Publications by authors named "Paul Davison"

The majority of marine microbes remain uncultured, which hinders the identification and mining of CO-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their C-bicarbonate (C-HCO) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution.

View Article and Find Full Text PDF

A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO fixation. A light-driven proton pump comprising rhodopsin (GR) and its cofactor retinal have been assembled in () H16.

View Article and Find Full Text PDF

Background: Pain and muscles weakness often delays regaining independent mobility following hip fracture surgery. Electrical stimulation may relieve pain and improve muscle strength and function.

Purpose: To systematically review and evaluate available literature examining the effectiveness of using electrical stimulation to promote clinical outcomes after hip fractures.

View Article and Find Full Text PDF

The insertion of magnesium into protoporphyrin initiates the biosynthesis of chlorophyll, the pigment that underpins photosynthesis. This reaction, catalysed by the magnesium chelatase complex, couples ATP hydrolysis by a ChlID motor complex to chelation within the ChlH subunit. We probed the structure and catalytic function of ChlH using a combination of X-ray crystallography, computational modelling, mutagenesis and enzymology.

View Article and Find Full Text PDF

In 1998, Gold and Heffner authored a landmark review in Clinical Psychology Review on the topic of sexual addiction that concluded that sexual addiction, though increasingly popular in mental health settings, was largely based on speculation, with virtually no empirical basis. In the more than two decades since that review, empirical research around compulsive sexual behaviors (which subsumes prior research about sexual addiction) has flourished, ultimately culminating in the inclusion of a novel diagnosis of Compulsive Sexual Behavior Disorder in the eleventh edition of the World Health Organization's International Classification of Diseases. The present work details a systematic review of empirical research published between January 1st, 1995 and August 1st, 2020 related to compulsive sexual behaviors, with a specific focus on evaluating the methodologies of that literature.

View Article and Find Full Text PDF

A type of chromosome-free cell called SimCells (simple cells) has been generated from , , and The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits.

View Article and Find Full Text PDF

Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Quantitative mass spectrometry shows that , exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∼148,000 apo-PR molecules per cell.

View Article and Find Full Text PDF

A toxicity biosensor Acinetobacter baylyi Tox2 was constructed with the host strain A. baylyi ADP1 harboring a new and medium-copy-number plasmid pWH1274_lux, and was applied to detect the cytotoxicity of heavy metal contaminated seawater. The gene cassette luxCDABE was controlled by constitutively expressed promoter P on pWH1274_lux and the bioluminescence intensity of the biosensor reduces in proportional to the concentrations of toxic compounds.

View Article and Find Full Text PDF

Introduction: Exercise and heat stress lead to systemic improvements in arterial endothelial function, vascular stiffness, and cardiopulmonary capacity. The improvements in endothelial function may be primarily mediated via increases in shear stress. This study examined whether improvements in arterial function may be achieved in the absence of systemic vascular adaptations.

View Article and Find Full Text PDF

Purpose: Previous studies suggest that exercise and heat stress improve cutaneous endothelial function, caused by increases in shear stress. However, as vasodilatation in the skin is primarily a thermogenic phenomenon, we investigated if shear stress alone without increases in skin temperature that occur with exercise and heat stress increases endothelial function. We examined the hypothesis that repeated bouts of brief occlusion would improve cutaneous endothelial function via shear stress-dependent mechanisms.

View Article and Find Full Text PDF

Climate change is expected to increase eutrophication risk in rivers yet few studies identify the timescale or spatial extent of such impacts. Phosphorus concentration, considered the primary driver of eutrophication risk in English rivers, may increase through reduced dilution particularly if river flows are lower in summer. Detailed models can indicate change in catchment phosphorus concentrations but targeted support for mitigation measures requires a national scale evaluation of risk.

View Article and Find Full Text PDF

This work serves as a proof-of-concept for bacterially derived SimCells (Simple Cells), which contain the cell machinery from bacteria and designed DNA (or potentially a simplified genome) to instruct the cell to carry out novel, specific tasks. SimCells represent a reprogrammable chassis without a native chromosome, which can host designed DNA to perform defined functions. In this paper, the use of Escherichia coli MC1000 ∆minD minicells as a non-reproducing chassis for SimCells was explored, as demonstrated by their ability to act as sensitive biosensors for small molecules.

View Article and Find Full Text PDF

Cell sorting coupled with single-cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial 'dark matter'. Single-cell Raman spectra (SCRSs) are label-free biochemical 'fingerprints' of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman-activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS.

View Article and Find Full Text PDF

Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp.

View Article and Find Full Text PDF

In oxygenic phototrophs, chlorophylls, hemes, and bilins are synthesized by a common branched pathway. Given the phototoxic nature of tetrapyrroles, this pathway must be tightly regulated, and an important regulatory role is attributed to magnesium chelatase enzyme at the branching between the heme and chlorophyll pathway. Gun4 is a porphyrin-binding protein known to stimulate in vitro the magnesium chelatase activity, but how the Gun4-porphyrin complex acts in the cell was unknown.

View Article and Find Full Text PDF

Magnesium chelatase (MgCH) initiates chlorophyll biosynthesis by catalysing the ATP-dependent insertion of Mg2+ into protoporphyrin. This large enzyme complex comprises ChlH, I and D subunits, with I and D involved in ATP hydrolysis, and H the protein that handles the substrate and product. The 148 kDa ChlH subunit has a globular N-terminal domain attached by a narrow linker to a hollow cage-like structure.

View Article and Find Full Text PDF

Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders-Rhodococcus sp.

View Article and Find Full Text PDF

Bacterial whole-cell biosensors (BWBs) have unique advantages over conventional environmental monitoring techniques on the detection of toxicity and bioavailability of contaminants in water and soils. BWBs can also be rapid, sensitive, semiquantitative, cost-effective, and easy to use. In this study, a standard method is described for the detection of contaminants and toxicity in real water and soil samples using Acinetobacter baylyi ADP1-based biosensors.

View Article and Find Full Text PDF

Synthetic biology involves reprogramming and engineering of regulatory genes in innovative ways for the implementation of novel tasks. Transcriptional gene regulation systems induced by small molecules in prokaryotes provide a rich source for logic gates. Cross-regulation, whereby a promoter is activated by different molecules or different promoters are activated by one molecule, can be used to design an OR-gate and achieve cross-talk between gene networks in cells.

View Article and Find Full Text PDF

The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait.

View Article and Find Full Text PDF

The biosynthesis of chlorophyll, an essential cofactor for photosynthesis, requires the ATP-dependent insertion of Mg(2+) into protoporphyrin IX catalyzed by the multisubunit enzyme magnesium chelatase. This enzyme complex consists of the I subunit, an ATPase that forms a complex with the D subunit, and an H subunit that binds both the protoporphyrin substrate and the magnesium protoporphyrin product. In this study we used electron microscopy and small-angle x-ray scattering to investigate the structure of the magnesium chelatase H subunit, ChlH, from the thermophilic cyanobacterium Thermosynechococcus elongatus.

View Article and Find Full Text PDF

Photosynthetic microorganisms play crucial roles in aquatic ecosystems and are the major primary producers in global marine ecosystems. The discovery of new bacteria and microalgae that play key roles in CO(2) fixation is hampered by the lack of methods to identify hitherto-unculturable microorganisms. To overcome this problem we studied single microbial cells using stable-isotope probing (SIP) together with resonance Raman (RR) microspectroscopy of carotenoids, the light-absorbing pigments present in most photosynthetic microorganisms.

View Article and Find Full Text PDF

Premise Of The Study: The Frullania tamarisci complex includes eight Holarctic liverwort species. One of these, F. asagrayana, is distributed broadly throughout eastern North America from Canada to the Gulf Coast.

View Article and Find Full Text PDF