Publications by authors named "Paul D Shepard"

Background: Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period.

View Article and Find Full Text PDF

Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known.

View Article and Find Full Text PDF

Background: The volatile anesthetic isoflurane may exert a rapid and long-lasting antidepressant effect in patients with medication-resistant depression. The mechanism underlying the putative therapeutic actions of the anesthetic have been attributed to its ability to elicit cortical burst suppression, a distinct EEG pattern with features resembling the characteristic changes that occur following electroconvulsive therapy. It is currently unknown whether the antidepressant actions of isoflurane are shared by anesthetics that do not elicit cortical burst suppression.

View Article and Find Full Text PDF

Unlabelled: Neurons in the lateral habenula (LHb) are transiently activated by aversive events and have been implicated in associative learning. Functional changes associated with tonic and phasic activation of the LHb are often attributed to a corresponding inhibition of midbrain dopamine (DA) neurons. Activation of GABAergic neurons in the rostromedial tegmental nucleus (RMTg), a region that receives dense projections from the LHb and projects strongly to midbrain monoaminergic nuclei, is believed to underlie the transient inhibition of DA neurons attributed to activation of the LHb.

View Article and Find Full Text PDF

The Research Domain Criteria (RDoC) initiative was implemented to reorient the approach to mental health research from one focused on Diagnostic and Statistical Manual of Mental Disorders (DSM) nosology to one oriented to psychological constructs constrained by neurocircuitry and molecular entities. The initiative has generated significant discussion and valuable reflection on the moorings of psychiatric research. The purpose of this article is to illustrate how a basic or clinical investigator can engage RDoC to explore the neurobiological underpinnings of psychopathology and how a research question can be formulated in RDoC's framework.

View Article and Find Full Text PDF

The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity.

View Article and Find Full Text PDF

Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful technique for assessing the functional connectivity of neurons within the central nervous system. Despite the widely held proposition that MEMRI signal is dependent on neuronal activity, few studies have directly tested this implicit hypothesis. In the present series of experiments, MnCl2 was injected into the habenula of urethane-anesthetized rats alone or in combination with drugs known to alter neuronal activity by modulating specific voltage- and/or ligand-gated ion channels.

View Article and Find Full Text PDF

Midbrain dopamine neurons are pacemakers in vitro, but in vivo they fire less regularly and occasionally in bursts that can lead to a temporary cessation in firing produced by depolarization block. The therapeutic efficacy of antipsychotic drugs used to treat the positive symptoms of schizophrenia has been attributed to their ability to induce depolarization block within a subpopulation of dopamine neurons. We summarize the results of experiments characterizing the physiological mechanisms underlying the ability of these neurons to enter depolarization block in vitro, and our computational simulations of those experiments.

View Article and Find Full Text PDF

The attribution of incentive salience to reward associated cues is critical for motivation and the pursuit of rewards. Disruptions in the integrity of the neural systems controlling these processes can lead to avolition and anhedonia, symptoms that cross the diagnostic boundaries of many neuropsychiatric illnesses. Here, we consider whether the habenula (Hb), a region recently demonstrated to encode negatively valenced events, also modulates the attribution of incentive salience to a neutral cue predicting a food reward.

View Article and Find Full Text PDF

Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues.

View Article and Find Full Text PDF

Bursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-à-go-go-related gene (ERG) K(+) channels are functionally significant.

View Article and Find Full Text PDF

Adult rats exposed to the DNA-methylating agent methylazoxymethanol on embryonic day 17 show a pattern of neurobiological deficits that model some of the neuropathological and behavioral changes observed in schizophrenia. Although it is generally assumed that these changes reflect targeted disruption of embryonic neurogenesis, it is unknown whether these effects generalise to other antimitotic agents administered at different stages of development. In the present study, neurochemical, behavioral and electrophysiological techniques were used to determine whether exposure to the antimitotic agent Ara-C later in development recapitulates some of the changes observed in methylazoxymethanol (MAM)-treated animals and in patients with schizophrenia.

View Article and Find Full Text PDF
Article Synopsis
  • Dopamine-containing midbrain neurons are essential in various psychiatric and neurological disorders, including schizophrenia, ADHD, and Parkinson's disease, and targeting their receptors is a common treatment approach.
  • A specific compound, CyPPA, was found to positively modulate SK channels (particularly the SK3 subtype), resulting in a decrease in dopamine neuronal firing and release, similar to effects produced by a known dopamine receptor agonist.
  • In vivo tests showed that CyPPA reduced hyperactivity and repetitive behaviors induced by methylphenidate in mice, highlighting the importance of SK3 channels in dopamine neuron function and potential therapeutic strategies for hyperdopaminergic conditions.
View Article and Find Full Text PDF

Dopamine (DA) neurons are autonomous pacemakers that occasionally fire bursts of action potentials, discharge patterns thought to reflect tonic and phasic DA signaling, respectively. Pacemaker activity depends on the concerted and cyclic interplay between intrinsic ion channels with small conductance Ca(2+)-activated K(+) (SK) channels playing an important role. Bursting activity is synaptically initiated but neither the transmitters nor the specific ion conductances involved have been definitively identified.

View Article and Find Full Text PDF

Small conductance Ca(2+) -activated K(+) (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca(2+) binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca(2+) affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1H-indole-2,3-dione-3-oxime and R-N-(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine.

View Article and Find Full Text PDF

There is a growing awareness that emotion, motivation, and reward values are important determinants of our behavior. The habenula is uniquely positioned both anatomically and functionally to participate in the circuit mediating some forms of emotive decision making. In the last few years there has been a surge of interest in this structure, especially the lateral habenula (LHb).

View Article and Find Full Text PDF

The brain's oscillatory activities in response to sensory input are likely signals representing different stages of sensory information processing. To understand these signals, it is critical to establish the specificity of the timing and frequency of oscillations associated with sensory and sensory-related cognitive processing. We used a simple paired auditory stimulus paradigm for sensory gating and sought to identify time- and frequency-specific oscillatory components contributing to sensory gating.

View Article and Find Full Text PDF

Antipsychotic drugs are thought to exert their therapeutic action by antagonizing dopamine receptors but are also known to produce side effects in the heart by inhibiting cardiac ether-a-go-go-related gene (ERG) K(+) channels. Recently, it has been discovered that the same channels are present in the brain, including midbrain dopamine neurons. ERG channels are most active after the cessation of intense electrical activity, and blockade of these channels prolongs plateau potentials in bursting dopamine neurons.

View Article and Find Full Text PDF

Blocking the small-conductance (SK) calcium-activated potassium channel promotes burst firing in dopamine neurons both in vivo and in vitro. In vitro, the bursting is unusual in that spiking persists during the hyperpolarized trough and frequently terminates by depolarization block during the plateau. We focus on the underlying plateau potential oscillation generated in the presence of both apamin and TTX, so that action potentials are not considered.

View Article and Find Full Text PDF

Transient changes in the activity of midbrain dopamine neurons encode an error signal that contributes to associative learning. Although considerable attention has been devoted to the mechanisms contributing to phasic increases in dopamine activity, less is known about the origin of the transient cessation in firing accompanying the unexpected loss of a predicted reward. Recent studies suggesting that the lateral habenula (LHb) may contribute to this type of signaling in humans prompted us to evaluate the effects of LHb stimulation on the activity of dopamine and non-dopamine neurons of the anesthetized rat.

View Article and Find Full Text PDF

Many patients with schizophrenia have pronounced deficits in the use of negative feedback to guide problem solving and learning, as seen on tasks like the Wisconsin Card Sorting Test. There is now a compelling body of evidence from nonhuman primates that suggests transient decreases in dopamine cell activity may reflect the occurrence of unexpected negative outcomes, such as the absence of an expected reward, and, generalizing to the human, the occurrence of negative feedback or the absence of expected reward. We present preliminary evidence that habenula projections to the midbrain are capable of producing a transient, but nearly complete, inhibition of dopamine neurons at a population level similar to that observed in behaving primates following an unexpected negative outcome.

View Article and Find Full Text PDF