Background: Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.
View Article and Find Full Text PDFIn urban areas, diverse and complex habitats for biodiversity are often lacking. This lack of diversity not only compromises essential ecological processes, such as pollination and nutrient cycling, but also diminishes the resilience of urban ecosystems to pests and diseases. To enhance urban biodiversity, a possible solution is to integrate shrubs alongside trees, thereby increasing the overall amount of vegetation, structural complexity and the associated resource diversity.
View Article and Find Full Text PDFClimate change is shifting temperatures from historical patterns, globally impacting forest composition and resilience. Seed germination is temperature-sensitive, making the persistence of populations and colonization of available habitats vulnerable to warming. This study assessed germination response to temperature in foundation trees in south-western Australia's Mediterranean-type climate forests ( (jarrah) and (marri)) to estimate the thermal niche and vulnerability among populations.
View Article and Find Full Text PDFAridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of subsp.
View Article and Find Full Text PDFThe frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge.
View Article and Find Full Text PDFBackground And Aims: Field surveys across known populations of the Endangered (Proteaceae) in 2019 suggested the soil environment may be associated with dieback in this species. To explore how characteristics of the soil environment (e.g.
View Article and Find Full Text PDFLocal adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting 'local' temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels.
View Article and Find Full Text PDFTemperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean-type climates (MTC). Forest management that enhance forests' resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape.
View Article and Find Full Text PDFWe have investigated the impact of recognized biogeographic barriers on genetic differentiation of grey box (), a common and widespread tree species of the family Myrtaceae in eastern Australian woodlands, and its previously proposed four subspecies , , , and . A range of phylogeographic analyses were conducted to examine the population genetic differentiation and subspecies genetic structure in in relation to biogeographic barriers. Slow evolving markers uncovering long term processes (chloroplast DNA) were used to generate a haplotype network and infer phylogeographic barriers.
View Article and Find Full Text PDFBackground And Aims: Extreme drought conditions across the globe are impacting biodiversity, with serious implications for the persistence of native species. However, quantitative data on physiological tolerance are not available for diverse flora to inform conservation management. We quantified physiological resistance to cavitation in the diverse Hakea genus (Proteaceae) to test predictions based on climatic origin, life history and functional traits.
View Article and Find Full Text PDFGenotype-environment association (GEA) methods have become part of the standard landscape genomics toolkit, yet, we know little about how to best filter genotype-by-sequencing data to provide robust inferences for environmental adaptation. In many cases, default filtering thresholds for minor allele frequency and missing data are applied regardless of sample size, having unknown impacts on the results, negatively affecting management strategies. Here, we investigate the effects of filtering on GEA results and the potential implications for assessment of adaptation to environment.
View Article and Find Full Text PDFAtmospheric carbon dioxide enrichment (eCO) can enhance plant carbon uptake and growth, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO concentration. Although evidence gathered from young aggrading forests has generally indicated a strong CO fertilization effect on biomass growth, it is unclear whether mature forests respond to eCO in a similar way. In mature trees and forest stands, photosynthetic uptake has been found to increase under eCO without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO unclear.
View Article and Find Full Text PDFWe used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment.
View Article and Find Full Text PDFClimate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.
View Article and Find Full Text PDFNatural ecosystems are under pressure from increasing abiotic and biotic stressors, including climate change and novel pathogens, which are putting species at risk of local extinction, and altering community structure, composition and function. Here, we aim to assess adaptive variation in growth and fungal disease resistance within a foundation tree, to determine local adaptation, trait heritability and genetic constraints in adapting to future environments. Two experimental planting sites were established in regions of contrasting rainfall with seed families from 18 populations capturing a wide range of climate origins (~4,000 individuals at each site).
View Article and Find Full Text PDFCatastrophic failure of the water transport pathway in trees is a principal mechanism of mortality during extreme drought. To be able to predict the probability of mortality at an individual and landscape scale we need knowledge of the time for plants to reach critical levels of hydraulic failure. We grew plants of eight species of Eucalyptus originating from contrasting climates before allowing a subset to dehydrate.
View Article and Find Full Text PDFInterspecific variation in plant hydraulic traits plays a major role in shaping species distributions across climates, yet variation within species is poorly understood. Here we report on intraspecific variation of hydraulic traits in Banksia serrata (L.f.
View Article and Find Full Text PDFGlobal climate is rapidly changing, and the ability for tree species to adapt is dependent on standing genomic variation; however, the distribution and abundance of functional and adaptive variants are poorly understood in natural systems. We test key hypotheses regarding the genetics of adaptive variation in a foundation tree: genomic variation is associated with climate, and genomic variation is more likely to be associated with temperature than precipitation or aridity. To test these hypotheses, we used 9,593 independent, genomic single-nucleotide polymorphisms (SNPs) from 270 individuals sampled from Corymbia calophylla's entire distribution in south-western Western Australia, spanning orthogonal temperature and precipitation gradients.
View Article and Find Full Text PDFUnderstanding forest tree responses to climate warming and heatwaves is important for predicting changes in tree species diversity, forest C uptake, and vegetation-climate interactions. Yet, tree species differences in heatwave tolerance and their plasticity to growth temperature remain poorly understood. In this study, populations of four Eucalyptus species, two with large range sizes and two with comparatively small range sizes, were grown under two temperature treatments (cool and warm) before being exposed to an equivalent experimental heatwave.
View Article and Find Full Text PDFManipulative experiments have suggested that embolism-induced hydraulic impairment underpins widespread tree mortality during extreme drought, yet in situ evidence is rare. One month after drought-induced leaf and branch dieback was observed in field populations of Eucalyptus piperita Sm. in the Blue Mountains (Australia), we measured the level of native stem embolism and characterized the extent of leaf death in co-occurring dieback and healthy (non-dieback) trees.
View Article and Find Full Text PDFIntraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh.
View Article and Find Full Text PDFDetecting genetic variants under selection using F outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field-based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA.
View Article and Find Full Text PDF