Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community.
View Article and Find Full Text PDFDetection of SARS-CoV-2 viral load in wastewater has been highly informative in estimating the approximate number of infected individuals in the surrounding communities. Recent developments in wastewater monitoring to determine community prevalence of COVID-19 further extends into identifying SARS-CoV-2 variants, including those being monitored for having enhanced transmissibility. We sequenced genomic RNA derived from wastewater to determine the variants of coronaviruses circulating in the communities.
View Article and Find Full Text PDFDetection of SARS-CoV-2 viral load in wastewater has been highly informative in estimating the approximate number of infected individuals in the surrounding communities. Recent developments in wastewater monitoring to determine community prevalence of COVID-19 further extends into identifying SARS-CoV-2 variants, including those being monitored for having enhanced transmissibility. We sequenced genomic RNA derived from wastewater to determine the variants of coronaviruses circulating in the communities.
View Article and Find Full Text PDFPatients with signs of COVID-19 were tested through diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from the nasopharyngeal/nasal swabs. To determine the variants of SARS-CoV-2 circulating in the state of Nevada, specimens from 200 COVID-19 patients were sequenced through our robust sequencing platform, which enabled sequencing of SARS-CoV-2 from specimens with even very low viral loads, without the need of culture-based amplification. High genome coverage allowed the identification of single and multi-nucleotide variants in SARS-CoV-2 in the community and their phylogenetic relationships with other variants present during the same period of the outbreak.
View Article and Find Full Text PDFBackground: The degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual.
View Article and Find Full Text PDFPatients with signs of COVID-19 were tested with CDC approved diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from nasopharyngeal/nasal swabs. In order to determine the variants of SARS-CoV-2 circulating in the state of Nevada, 200 patient specimens from COVID-19 patients were sequenced through our robust protocol for sequencing SARS-CoV-2 genomes. Our protocol enabled sequencing of SARS-CoV-2 genome directly from the specimens, with even very low viral loads, without the need of culture-based amplification.
View Article and Find Full Text PDFThe clinical management and therapy of many solid tumor malignancies depends on detection of medically actionable or diagnostically relevant genetic variation. However, a principal challenge for genetic assays from tumors is the fragmented and chemically damaged state of DNA in formalin-fixed, paraffin-embedded (FFPE) samples. From highly fragmented DNA and RNA there is no current technology for generating long-range DNA sequence data as is required to detect genomic structural variation or long-range genotype phasing.
View Article and Find Full Text PDFLong-range and highly accurate de novo assembly from short-read data is one of the most pressing challenges in genomics. Recently, it has been shown that read pairs generated by proximity ligation of DNA in chromatin of living tissue can address this problem, dramatically increasing the scaffold contiguity of assemblies. Here, we describe a simpler approach ("Chicago") based on in vitro reconstituted chromatin.
View Article and Find Full Text PDFThe HIV-1 accessory protein Vif hijacks a cellular Cullin-RING ubiquitin ligase, CRL5, to promote degradation of the APOBEC3 (A3) family of restriction factors. Recently, the cellular transcription cofactor CBFβ was shown to form a complex with CRL5-Vif and to be essential for A3 degradation and viral infectivity. We now demonstrate that CBFβ is required for assembling a well-ordered CRL5-Vif complex by inhibiting Vif oligomerization and by activating CRL5-Vif via direct interaction.
View Article and Find Full Text PDFSecretory vesicles are used during spermatogenesis to deliver proteins to the cell surface. In Caenorhabditis elegans, secretory membranous organelles (MO) fuse with the plasma membrane to transform spermatids into fertilization-competent spermatozoa. We show that, like the acrosomal vesicle of mammalian sperm, MOs undergo acidification during development.
View Article and Find Full Text PDFHigh-resolution nucleosome occupancy maps of heterochromatic regions of wild-type and silencing-defective mutants of the fission yeast Schizosaccharomyces pombe revealed that heterochromatin induces the elimination of nucleosome-free regions (NFRs). NFRs associated with transcription initiation sites as well as those not associated with promoters are affected. We dissected the roles of the histone H3K9 methyltransferase Clr4 and the HP1 proteins Swi6 and Chp2, as well as the two catalytic activities of the SHREC histone deacetylase (HDAC)/ATPase effector complex.
View Article and Find Full Text PDFThe chromatin architecture of eukaryotic gene promoters is generally characterized by a nucleosome-free region (NFR) flanked by at least one H2A.Z variant nucleosome. Computational predictions of nucleosome positions based on thermodynamic properties of DNA-histone interactions have met with limited success.
View Article and Find Full Text PDFIn S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread.
View Article and Find Full Text PDF