Publications by authors named "Paul D Hallett"

Microplastics (MiPs) can potentially influence soil structural stability, with impacts likely dependent on their chemistry, concentration, size, and degradation in soil. This study used high-energy moisture characteristics (HEMC; water retention at matric suctions from 0 to 50 hPa) to quantify the effects of these MiP properties on soil structure stabiltiy. The HEMCs of soil samples contaminated with polypropylene (PP) or polyethylene (PE) were measured and modelled.

View Article and Find Full Text PDF

Bacterial transport and retention likely depend on bacterial and soil surface properties, especially hydrophobicity. We used a controlled experimental setup to explore hydrophilic Escherichia coli (E. coli) and hydrophobic Rhodococcus erythropolis (PTCC1767) (R.

View Article and Find Full Text PDF

Applying wastewater in subsurface drip irrigation helps address water shortage in arid and semi-arid environments. Microbial contamination may result, but soil amendments such as biochar could help protect soil and water resources. To improve understanding, this study investigated spatio-temporal dynamics of fecal coliform retention in a biochar-treated soil under subsurface drip irrigation.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists think we can use special plant traits, like how plants interact with soil and their roots, to make healthier soils that hold more carbon and nutrients.
  • Modern crops still have these traits, but there's room to make them even better since they can be different between plant types and affected by their environment.
  • Future studies should look at how choosing plants with these special traits affects both the plants and the soil, not just in labs but also in real-life farming situations.
View Article and Find Full Text PDF

Nitrate accumulated deep (>100 cm) in the regolith (soil and saprolite) threatens groundwater quality, but most studies focus only on nitrate nearer the surface (<100 cm). Surface soil management versus regolith interactions affect deep nitrate leaching, but their combined impact remains unclear. This study measured how deep nitrate accumulation was affected by crop practices including orchard/cropland planting years, regolith structure, and soil properties in highly weathered subtropical red soils.

View Article and Find Full Text PDF

Microbial transport in soil affects pathogen retention, colonization, and innoculant delivery in bioremediating agricultural soils. Various bacteria strains residing in the fluid phases of soils are potential contaminants affecting human health. We measured the transport of hydrophilic Escherichia coli (E.

View Article and Find Full Text PDF

Soil adjacent to roots has distinct structural and physical properties from bulk soil, affecting water and solute acquisition by plants. Detailed knowledge on how root activity and traits such as root hairs affect the three-dimensional pore structure at a fine scale is scarce and often contradictory. Roots of hairless barley (Hordeum vulgare L.

View Article and Find Full Text PDF

Background And Aims: Alternate wetting and drying (AWD) saves water in paddy rice production but could influence soil physical conditions and root growth. This study investigated the interaction between contrasting rice genotypes, soil structure and mechanical impedance influenced by hydraulic stresses typical of AWD.

Methods: Contrasting rice genotypes, IR64 and deeper-rooting Black Gora were grown in various soil conditions for 2 weeks.

View Article and Find Full Text PDF

In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms.

View Article and Find Full Text PDF

QTL mapping identifies a range of underlying and unrelated genes with apparent roles in raspberry fruit ripening and softening that show characteristic developing fruit expression profiles. Fruit softening is an important agronomical trait that involves a complex interaction of plant cell processes. We have used both qualitative and quantitative scoring of fruit firmness, length, mass, and resistance to applied force to identify QTL in a raspberry mapping population.

View Article and Find Full Text PDF

In many agricultural catchments of Europe and North America, pesticides occur at generally low concentrations with significant temporal variation. This poses several challenges for both monitoring and understanding ecological risks/impacts of these chemicals. This study aimed to compare the performance of passive and spot sampling strategies given the constraints of typical regulatory monitoring.

View Article and Find Full Text PDF

Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’.

View Article and Find Full Text PDF

Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g.

View Article and Find Full Text PDF

Background: Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers.

View Article and Find Full Text PDF

The outer surface of myxospermous seed coats contains mucilage which absorbs large amounts of water relative to its dry weight. Ecologically, the seed mucilage can affect seed germination and dormancy. Upon hydration, a large proportion of the seed mucilage is lost to the soil and the physics of soil-seed mucilage interactions has not been assessed.

View Article and Find Full Text PDF

Background And Aims: Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator.

Methods: Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices.

View Article and Find Full Text PDF

Pseudomonads are able to form a variety of biofilms that colonize the air-liquid (A-L) interface of static liquid microcosms, and differ in matrix composition, strength, resilience and degrees of attachment to the microcosm walls. From Pseudomonas fluorescens SBW25, mutants have evolved during prolonged adaptation-evolution experiments which produce robust biofilms of the physically cohesive class at the A-L interface, and which have been well characterized. In this study we describe a novel A-L interface biofilm produced by SBW25 that is categorized as a viscous mass (VM)-class biofilm.

View Article and Find Full Text PDF

Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.

View Article and Find Full Text PDF