This study presents a set of laboratory-scale transport experiments and numerical simulations evaluating carboxymethyl cellulose (CMC) polymer stabilized nano-scale zero-valent iron (nZVI) transport. The experiments, performed in a glass-walled two-dimensional (2D) porous medium system, were conducted to identify the effects of water specific discharge and CMC concentration on nZVI transport and to produce data for model validation. The transport and movement of a tracer lissamine green B® (LGB) dye, CMC, and CMC-nZVI were evaluated through analysis of the breakthrough curves (BTCs) at the outlets, the time-lapsed images of the plume, and retained nZVI in the sandbox.
View Article and Find Full Text PDF