Publications by authors named "Paul D Fowler"

Hydrodynamic slip, the motion of a liquid along a solid surface, represents a fundamental phenomenon in fluid dynamics that governs liquid transport at small scales. For polymeric liquids, de Gennes predicted that the Navier boundary condition together with polymer reptation implies extraordinarily large interfacial slip for entangled polymer melts on ideal surfaces; this Navier-de Gennes model was confirmed using dewetting experiments on ultra-smooth, low-energy substrates. Here, we use capillary leveling-surface tension driven flow of films with initially non-uniform thickness-of polymeric films on these same substrates.

View Article and Find Full Text PDF

We report on the capillary-driven leveling of a topographical perturbation at the surface of a freestanding liquid nanofilm. The width of a stepped surface profile is found to evolve as the square root of time. The hydrodynamic model is in excellent agreement with the experimental data.

View Article and Find Full Text PDF

In both research and industrial settings spincoating is extensively used to prepare highly uniform thin polymer films. However, under certain conditions, spincoating results in films with non-uniform surface morphologies. Although the spincoating process has been extensively studied, the origin of these morphologies is not fully understood and the formation of non-uniform spin-cast films remains a practical problem.

View Article and Find Full Text PDF

It is known that polymer films, prepared by spin coating, inherit non-equilibrium configurations which can affect macroscopic film properties. Here we present the results of crazing experiments that support this claim; our measurements indicate that the as-cast chain configurations are strongly stretched as compared to equilibrium Gaussian configurations. The results of our experiments also demonstrate that the entanglement network equilibrates on a time scale comparable to one reptation time.

View Article and Find Full Text PDF