Tau fibrils are the main proteinacious components of neurofibrillary lesions in Alzheimer disease. Although RNA molecules are sequestered into these lesions, their relationship to Tau fibrils is only poorly understood. Such understanding, however, is important, as short fibrils can transfer between neurons and nonproteinacious factors including RNA could play a defining role in modulating the latter process.
View Article and Find Full Text PDFThe propagation of Tau pathology in Alzheimer's disease (AD) is thought to proceed through templated conversion of Tau protein into fibrils and cell-to-cell transfer of elongation-competent seeds. To investigate the efficiency of Tau conversion, we adapted the protein misfolding cyclic amplification assay used for the conversion of prions. Utilizing heparin as a cofactor and employing repetitive cycles of shearing and growth, synthetic Tau fibrils and Tau fibrils in AD brain extract are progressively amplified.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2014
Seeded conversion of tau monomers into fibrils is a central step in the progression of tau pathology in Alzheimer's disease and other neurodegenerative disorders. Self-assembly is mediated by the microtubule binding repeats in tau. There are either three or four repeats present depending on the protein isoform.
View Article and Find Full Text PDFTau filaments are the pathological hallmark of >20 neurodegenerative diseases including Alzheimer's disease. Six tau isoforms exist that can be grouped into 4-repeat (4R) tau and 3-repeat (3R) tau based on the presence or absence of the second of four microtubule binding repeats. Recent evidence suggests that tau filaments can transfer between cells and spread through the brain.
View Article and Find Full Text PDF