Publications by authors named "Paul Cordero"

The NAD-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE.

View Article and Find Full Text PDF

Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H-driven regeneration of the OYE cofactor FMNH.

View Article and Find Full Text PDF

Objective: Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis.

Design: Performance of Yaq-001 was evaluated .

View Article and Find Full Text PDF

Background: Patient-reported outcome (PRO) instruments should capture the experiences of disease and treatment that patients consider most important in order to inform patient-centred care and product development. The aim of this study was to develop a preliminary conceptual model of patient experience in chronic kidney disease (CKD) based on a targeted literature review and to characterize existing PRO instruments used in CKD.

Methods: PubMed, EMBASE and Cochrane databases and recent society meetings were searched for publications reporting signs/symptoms and life impacts of CKD.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon monoxide (CO) is known for its dangerous toxicity, particularly affecting proteins like respiratory terminal oxidases in bacteria, but its antibacterial effects are still debated.
  • The study investigates the resistance of mycobacteria to CO, finding only minor growth inhibition and highlighting the role of cytochrome oxidase, which shows resistance to CO, while adjacent complexes are affected negatively.
  • Overall, mycobacteria demonstrate a strong ability to adapt to CO presence with minimal proteome changes, mainly through utilizing CO-resistant respiratory mechanisms.
View Article and Find Full Text PDF

F is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies two iron-sulfur cluster proteins, HucE and HhyE, that are essential for hydrogen consumption in these bacteria; deleting their genes significantly hinders hydrogen oxidation and reduces bacterial growth.
  • * The researchers hypothesize that these proteins facilitate electron transfer between hydrogenases and the respiratory chain, highlighting their importance for atmospheric hydrogen oxidation and the need for further investigation into their functions.
View Article and Find Full Text PDF
Article Synopsis
  • Aerobic soil bacteria can survive in nutrient-poor conditions by metabolizing atmospheric hydrogen (H), which plays a crucial role in the global H cycle and aids microbial productivity in oligotrophic environments.
  • The soil bacterium has two types of [NiFe] hydrogenases, Huc and Hhy, that although they seem similar, are expressed and function differently during various growth phases, with Huc active during early growth stages and Hhy utilized for long-term survival.
  • Huc and Hhy are integrated into the aerobic respiratory chain and interact differently with respiratory processes; Huc aids in energy conservation during initial growth, while Hhy supports energy needs during carbon limitation.
View Article and Find Full Text PDF

Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process remain incompletely resolved.

View Article and Find Full Text PDF

Obesity is the most prevalent noncommunicable disease in the 21st century, associated with triglyceride deposition in hepatocytes leading to nonalcoholic fatty liver disease (NAFLD). NAFLD is now present in around a third of the world's population. Epidemiological studies have concluded that ethnicity plays a role in complications and treatment response.

View Article and Find Full Text PDF

Most aerobic bacteria exist in dormant states within natural environments. In these states, they endure adverse environmental conditions such as nutrient starvation by decreasing metabolic expenditure and using alternative energy sources. In this study, we investigated the energy sources that support persistence of two aerobic thermophilic strains of the environmentally widespread but understudied phylum Chloroflexi.

View Article and Find Full Text PDF

Background: The incidence of nonalcoholic fatty liver disease (NAFLD) continues to parallel the rise in obesity rates. Endobariatric devices such as the intragastric balloon (IGB) may provide an alternative treatment option.

Methods: Outcomes following IGB treatment in 135 patients with obesity and NAFLD (mean baseline weight 117.

View Article and Find Full Text PDF

Maternal obesity predisposes offspring to metabolic dysfunction and Non-Alcoholic Fatty Liver Disease (NAFLD). Melanocortin-4 receptor (Mc4r)-deficient mouse models exhibit obesity during adulthood. Here, we aim to determine the influence of the Mc4r gene on the liver of mice subjected to perinatal diet-induced obesity.

View Article and Find Full Text PDF

We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a mycotoxin that contaminates foodstuffs. The most relevant concern is its high kidney carcinogenicity in male rats and its unclear mechanism of action. It has been hypothesized that variations in transport mechanisms in kidney cells may be the reason of different sex-dependent sensitivities towards OTA.

View Article and Find Full Text PDF

Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%-20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity.

View Article and Find Full Text PDF

The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly in parallel with obesity rates. The underlying pathogenesis of NAFLD remains an enigma but is largely influenced by individual lifestyle choices involving diet and exercise. Therefore, studies have highlighted the importance of calorie reduction and macronutrient composition (eg, carbohydrate and fat) in modifying disease outcomes.

View Article and Find Full Text PDF

The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity.

View Article and Find Full Text PDF

The denitrifying bacterium 'Aromatoleum aromaticum' strain EbN1 is one of the best characterized bacteria regarding anaerobic ethylbenzene degradation. EbN1 also degrades various other aromatic and phenolic compounds in the absence of oxygen, one of them being p-ethylphenol. Despite having similar chemical structures, ethylbenzene and p-ethylphenol have been proposed to be metabolized by completely separate pathways.

View Article and Find Full Text PDF

Background: The parasympathetic nervous system (PNS), via neurotransmitter acetylcholine (ACh), modulates fibrogenesis in animal models. However, the role of ACh in human hepatic fibrogenesis is unclear.

Aims: We aimed to determine the fibrogenic responses of human hepatic stellate cells (hHSC) to ACh and the relevance of the PNS in hepatic fibrosis in patients with non-alcoholic steatohepatitis (NASH).

View Article and Find Full Text PDF

Purpose Of Review: After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment.

Recent Findings: Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power.

View Article and Find Full Text PDF

Obesity and stroke are multifactorial diseases in which genetic, epigenetic and lifestyle factors are involved. The research aims were, first, the description of genes with differential epigenetic regulation obtained by an 'omics' approach in patients with ischemic stroke and, second, to determine the importance of some regions of these selected genes in biological processes depending on the body mass index. A case-control study using two populations was designed.

View Article and Find Full Text PDF

Maternal perinatal nutrition may program offspring metabolic features. Epigenetic regulation is one of the candidate mechanisms that may be affected by maternal dietary methyl donors intake as potential controllers of plasma homocysteine levels. Thirty-two Wistar pregnant rats were randomly assigned into four dietary groups during lactation: control, control supplemented with methyl donors, high-fat-sucrose and high-fat-sucrose supplemented with methyl donors.

View Article and Find Full Text PDF