Integral membrane proteins (MPs) are important drug targets across most fields of medicine, but historically have posed a major challenge for drug discovery due to difficulties in producing them in functional forms. We review the state of the art in drug discovery strategies using recombinant multipass MPs, and outline methods to successfully express, stabilize, and formulate them for small-molecule and monoclonal antibody therapeutics development. Advances in structure-based drug design and high-throughput screening are allowing access to previously intractable targets such as ion channels and transporters, propelling the field towards the development of highly specific therapies targeting desired conformations.
View Article and Find Full Text PDFMonoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties.
View Article and Find Full Text PDFWe describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated K1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to K1.
View Article and Find Full Text PDFIon channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides.
View Article and Find Full Text PDFIt is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported.
View Article and Find Full Text PDFA transmission-blocking vaccine targeting the sexual stages of Plasmodium species could play a key role in eradicating malaria. Multiple studies have identified the P. falciparum proteins Pfs25 and Pfs48/45 as prime targets for transmission-blocking vaccines.
View Article and Find Full Text PDFIdentifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.
View Article and Find Full Text PDFCurrent methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E.
View Article and Find Full Text PDFYeast glycan biosynthetic pathways are commonly studied through metabolic incorporation of an exogenous radiolabeled compound into a target glycan. In Saccharomyces cerevisiae glycosylphosphatidylinositol (GPI) biosynthesis, [(3) H]inositol has been widely used to identify intermediates that accumulate in conditional GPI synthesis mutants. However, this approach also labels non-GPI lipid species that overwhelm detection of early GPI intermediates during chromatography.
View Article and Find Full Text PDFPhosphoglycerate mutases (PGM) interconvert 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. A putative cofactor-independent phosphoglycerate mutase gene (iPGM) was identified in the genome sequence of the Wolbachia endosymbiont from the filarial nematode, Brugia malayi (wBm). Since iPGM has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase (dPGM) found in mammals, it may represent an attractive Wolbachia drug target.
View Article and Find Full Text PDFAs the primary microtubule-organizing centre of the mammalian cell, the centrosome plays many important roles during cell growth and organization. This is evident across a broad range of cell types and processes, such as the proliferation, differentiation and polarity of neural cells. Additionally, given its localization and function, there are likely to be many more processes that rely on the centrosome that have not yet been characterized.
View Article and Find Full Text PDFMytilus californianus foot protein three (Mcfp-3) was successfully expressed in the yeast, Kluyveromyces lactis. The first nine amino acids (YPYDVPDYA) from the human-influenza-virus hemagglutinin (HA) protein were fused to the amino terminus of Mcfp-3 (HA-Mcfp-3) to facilitate identification and purification. HA-Mcfp-3 was purified to a concentration of 1mg/L using HA affinity chromatography.
View Article and Find Full Text PDFThe yeast Kluyveromyces lactis has been extensively used as a host for heterologous protein expression. A necessary step in the construction of a stable expression strain is the introduction of an integrative expression vector into K. lactis cells, followed by selection of transformed strains using either medium containing antibiotic (e.
View Article and Find Full Text PDFKluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2005
The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression constructs in E.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2005
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain.
View Article and Find Full Text PDFGlycosylphosphatidylinositols (GPIs) are essential for viability in yeast and have key roles in cell wall construction. Assembly of Saccharomyces cerevisiae GPIs includes the addition of a fourth, side-branching mannose (Man) to the third Man of the core GPI glycan by the Smp3 mannosyltransferase. The SMP3 gene from the human pathogenic fungus Candida albicans has been cloned.
View Article and Find Full Text PDFYeast and human glycosylphosphatidylinositol (GPI) precursors differ in the extent to which a fourth mannose is present as a side branch of the third core mannose. A fourth mannose addition to GPIs has scarcely been detected in studies of mammalian GPI synthesis but is an essential step in the Saccharomyces cerevisiae pathway. We report that human SMP3 encodes a functional homolog of the yeast Smp3 GPI fourth mannosyl-transferase.
View Article and Find Full Text PDFBcl-2 family proteins are key regulators of apoptosis. Both pro-apoptotic and anti-apoptotic members of this family are found in mammalian cells, but only the pro-apoptotic protein Debcl has been characterized in Drosophila: Here we report that Buffy, the second Drosophila Bcl-2-like protein, is a pro-survival protein. Ablation of Buffy by RNA interference leads to ectopic apoptosis, whereas overexpression of buffy results in the inhibition of developmental programmed cell death and gamma irradiation-induced apoptosis.
View Article and Find Full Text PDFCaspase-2 is unique among mammalian caspases because it localizes to the nucleus in a prodomain-dependent manner. The caspase-2 prodomain also regulates caspase-2 activity via a caspase recruitment domain that mediates oligomerization of procaspase-2 molecules and their subsequent autoactivation. In this study we sought to map specific functional regions in the caspase-2 prodomain that regulate its nuclear transport and also its activation.
View Article and Find Full Text PDF