Publications by authors named "Paul Cisek"

Accurate interaction with the environment relies on the integration of external information about the spatial layout of potential actions and knowledge of their costs and benefits. Previous studies have shown that when given a choice between voluntary reaching movements, humans tend to prefer actions with lower biomechanical costs. However, these studies primarily focused on decisions made before the onset of movement ("decide-then-act" scenarios), and it is not known to what extent their conclusions generalize to many real-life situations, in which decisions occur during ongoing actions ("decide-while-acting").

View Article and Find Full Text PDF

One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data.

View Article and Find Full Text PDF

Prominent accounts of sentient behavior depict brains as generative models of organismic interaction with the world, evincing intriguing similarities with current advances in generative artificial intelligence (AI). However, because they contend with the control of purposive, life-sustaining sensorimotor interactions, the generative models of living organisms are inextricably anchored to the body and world. Unlike the passive models learned by generative AI systems, they must capture and control the sensory consequences of action.

View Article and Find Full Text PDF

When choosing between options with multiple attributes, do we integrate all attributes into a unified measure for comparison, or does the comparison also occur at the level of each attribute, involving parallel processes that can dynamically influence each other? What happens when independent sensory features all carry information about the same decision factor, such as reward value? To investigate these questions, we asked human participants to perform a two-alternative forced choice reaching task in which the reward value of a target was indicated by two visual attributes-its brightness ("bottom-up," BU feature) and its orientation ("top-down," TD feature). If decisions always occur after the integration of both features, there should be no difference in the reaction time (RT) regardless of the attribute combinations that drove the choice. Counter to that prediction, RT distributions depended on the attribute combinations of given targets and the choices made by participants.

View Article and Find Full Text PDF

Psychology and neuroscience are concerned with the study of behavior, of internal cognitive processes, and their neural foundations. However, most laboratory studies use constrained experimental settings that greatly limit the range of behaviors that can be expressed. While focusing on restricted settings ensures methodological control, it risks impoverishing the object of study: by restricting behavior, we might miss key aspects of cognitive and neural functions.

View Article and Find Full Text PDF

Recent theoretical models suggest that deciding about actions and executing them are not implemented by completely distinct neural mechanisms but are instead two modes of an integrated dynamical system. Here, we investigate this proposal by examining how neural activity unfolds during a dynamic decision-making task within the high-dimensional space defined by the activity of cells in monkey dorsal premotor (PMd), primary motor (M1), and dorsolateral prefrontal cortex (dlPFC) as well as the external and internal segments of the globus pallidus (GPe, GPi). Dimensionality reduction shows that the four strongest components of neural activity are functionally interpretable, reflecting a state transition between deliberation and commitment, the transformation of sensory evidence into a choice, and the baseline and slope of the rising urgency to decide.

View Article and Find Full Text PDF

Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate.

View Article and Find Full Text PDF

Humans and other animals are able to adjust their speed-accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis.

View Article and Find Full Text PDF

Studies of neural population dynamics of cell activity from monkey motor areas during reaching show that it mostly represents the generation and timing of motor behavior. We compared neural dynamics in dorsal premotor cortex (PMd) during the performance of a visuomotor task executed individually or cooperatively and during an observation task. In the visuomotor conditions, monkeys applied isometric forces on a joystick to guide a visual cursor in different directions, either alone or jointly with a conspecific.

View Article and Find Full Text PDF
Evolution of behavioural control from chordates to primates.

Philos Trans R Soc Lond B Biol Sci

February 2022

This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates.

View Article and Find Full Text PDF
Neuroscience needs evolution.

Philos Trans R Soc Lond B Biol Sci

February 2022

The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history.

View Article and Find Full Text PDF

Decision-making is traditionally described as a cognitive process of deliberation followed by commitment to an action choice, preceding the planning and execution of the chosen action. However, this is challenged by recent data suggesting that during situated decisions, multiple options are specified simultaneously and compete in premotor cortical areas for selection and execution. Previous studies focused on the competition during planning and left unaddressed the dynamics of decisions during movement.

View Article and Find Full Text PDF

Most current decision-making research focuses on classical economic scenarios, where choice offers are prespecified and where action dynamics play no role in the decision. However, our brains evolved to deal with different choice situations: "embodied decisions". As examples of embodied decisions, consider a lion that has to decide which gazelle to chase in the savannah or a person who has to select the next stone to jump on when crossing a river.

View Article and Find Full Text PDF

Humans and other animals often need to balance the desire to gather sensory information (to make the best choice) with the urgency to act, facing a speed-accuracy tradeoff (SAT). Given the ubiquity of SAT across species, extensive research has been devoted to understanding the computational mechanisms allowing its regulation at different timescales, including from one context to another, and from one decision to another. However, animals must frequently change their SAT on even shorter timescales-that is, over the course of an ongoing decision-and little is known about the mechanisms that allow such rapid adaptations.

View Article and Find Full Text PDF

A successful class of models link decision-making to brain signals by assuming that evidence accumulates to a decision threshold. These evidence accumulation models have identified neuronal activity that appears to reflect sensory evidence and decision variables that drive behavior. More recently, an additional evidence-independent and time-variant signal, called urgency, has been hypothesized to accelerate decisions in the face of insufficient evidence.

View Article and Find Full Text PDF

Neurophysiological studies suggest that when decisions are made between concrete actions, the selection process involves a competition between potential action representations in the same sensorimotor structures involved in executing those actions. However, it is unclear how such models can explain situations, often encountered during natural behavior, in which we make decisions while were are already engaged in performing an action. Does the process of deliberation characterized in classical studies of decision-making proceed the same way when subjects are deciding while already acting? In the present study, human subjects continuously tracked a target moving in the horizontal plane and were occasionally presented with a new target to which they could freely choose to switch at any time, whereupon it became the new tracked target.

View Article and Find Full Text PDF

Humans and other animals are faced with decisions about actions on a daily basis. These typically include a period of deliberation that ends with the commitment to a choice, which then leads to the overt expression of that choice through action. Previous studies with monkeys have demonstrated that neural activity in sensorimotor areas correlates with the deliberation process and reflects the moment of commitment before movement initiation, but the causal roles of these regions are challenging to establish.

View Article and Find Full Text PDF

If we abandon the coding metaphor in favor of models of the full behavioral loop, we need a way to dissect that loop into understandable pieces. I suggest that evolutionary data provide a solution. We can subdivide behavior into parallel sensorimotor subsystems by following the phylogenetic history of how those systems differentiated and specialized during our evolution, leading to promising ways of re-interpreting neural activity within the context of its pragmatic role in mediating interaction.

View Article and Find Full Text PDF

In this article, we challenge the usefulness of "attention" as a unitary construct and/or neural system. We point out that the concept has too many meanings to justify a single term, and that "attention" is used to refer to both the explanandum (the set of phenomena in need of explanation) and the explanans (the set of processes doing the explaining). To illustrate these points, we focus our discussion on visual selective attention.

View Article and Find Full Text PDF

Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear.

View Article and Find Full Text PDF

This article proposes that biologically plausible theories of behavior can be constructed by following a method of "phylogenetic refinement," whereby they are progressively elaborated from simple to complex according to phylogenetic data on the sequence of changes that occurred over the course of evolution. It is argued that sufficient data exist to make this approach possible, and that the result can more effectively delineate the true biological categories of neurophysiological mechanisms than do approaches based on definitions of putative functions inherited from psychological traditions. As an example, the approach is used to sketch a theoretical framework of how basic feedback control of interaction with the world was elaborated during vertebrate evolution, to give rise to the functional architecture of the mammalian brain.

View Article and Find Full Text PDF

Humans and other animals are motivated to act so as to maximize their subjective reward rate. Here, we propose that reward rate maximization is accomplished by adjusting a context-dependent "urgency signal," which influences both the commitment to a developing action choice and the vigor with which the ensuing action is performed. We review behavioral and neurophysiological data suggesting that urgency is controlled by projections from the basal ganglia to cerebral cortical regions, influencing neural activity related to decision making as well as activity related to action execution.

View Article and Find Full Text PDF

Prominent theories of decision making suggest that the basal ganglia (BG) play a causal role in deliberation between action choices. An alternative hypothesis is that deliberation occurs in cortical regions, while the BG control the speed-accuracy trade-off (SAT) between committing to a choice versus continuing to deliberate. Here, we test these hypotheses by recording activity in the internal and external segments of the globus pallidus (GPi/GPe) while monkeys perform a task dissociating the process of deliberation, the moment of commitment, and adjustment of the SAT.

View Article and Find Full Text PDF

We report a case of a symptomatic and rapidly expanding aneurysm of an in situ saphenous vein graft in a 70-year-old man with extensive prior open and endovascular procedures for aneurysmal disease. He was found to have full-length aneurysmal dilation with rapid progression over the course of 6 months. Successful ligation and exclusion with subtotal excision of the aneurysmal segment was performed, and revision bypass was foregone because of adequate distal perfusion via collateralization.

View Article and Find Full Text PDF

Unlabelled: Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial.

View Article and Find Full Text PDF