By measuring the change in soil protist communities, the effect of human land use on grasslands can be monitored to promote sustainable ecosystem functioning. Protists form the active link in the rhizosphere between the plant roots and higher trophic organisms; however, only few morphological species and their ecological values have yet been described in this context. To investigate the communicability between morphological and molecular databases used in the molecular barcoding of protists and in the biomonitoring of grassland soil, the present high-throughput sequencing (HTS) study (N=150) covered the area of central Europe (mesoscale) known to be well studied for ciliated protists.
View Article and Find Full Text PDFProtists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate.
View Article and Find Full Text PDFGenomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100μm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship.
View Article and Find Full Text PDFLand-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites).
View Article and Find Full Text PDF