Proc Natl Acad Sci U S A
November 2024
Microscale objects responding to chemical gradients by migrating toward or away from a preferred species is a simple yet constitutive mechanism by which transport occurs in biological organisms. Synthetic chemotaxis provides key physical descriptions of simplified systems that can be used in biological models, or in the creation of advanced responsive material systems. In this article, we provide a quantitative framework for understanding synthetic chemotaxis of microparticles which involves a competition between phoresis and osmosis.
View Article and Find Full Text PDFIn photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of photonic band gaps.
View Article and Find Full Text PDFThe invention of DNA nanotechnology has enabled molecular computation as a promising substitute for traditional semiconductors which are limited to two-dimensional architectures and by heating problems resulting from densification. Current studies of logic gates achieved using DNA molecules are predominately focused on two-state operations (AND, OR, .); however, realizing tri-state logic (high impedance Z) in DNA computation is understudied.
View Article and Find Full Text PDFDriven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets.
View Article and Find Full Text PDFA simple dynamical model, biased random organization (BRO), appears to produce configurations known as random close packing (RCP) as BRO's densest critical point in dimension d=3. We conjecture that BRO likewise produces RCP in any dimension; if so, then RCP does not exist in d=1-2 (where BRO dynamics lead to crystalline order). In d=3-5, BRO produces isostatic configurations and previously estimated RCP volume fractions 0.
View Article and Find Full Text PDFNanoscale industrial robots have potential as manufacturing platforms and are capable of automatically performing repetitive tasks to handle and produce nanomaterials with consistent precision and accuracy. We demonstrate a DNA industrial nanorobot that fabricates a three-dimensional (3D), optically active chiral structure from optically inactive parts. By making use of externally controlled temperature and ultraviolet (UV) light, our programmable robot, ~100 nanometers in size, grabs different parts, positions and aligns them so that they can be welded, releases the construct, and returns to its original configuration ready for its next operation.
View Article and Find Full Text PDFThe ability of active matter to assemble into reconfigurable nonequilibrium structures has drawn considerable interest in recent years. We investigate how active fluids respond to spatial light patterns through simulations and experiments on light-activated self-propelled colloidal particles. We examine the processes of inverse templated assembly, which involves creating a region without active particles through a bright pattern, and templated assembly, which promotes the formation of dense particle regions through a dark pattern.
View Article and Find Full Text PDFVortical flows of rotating particles describe interactions ranging from molecular machines to atmospheric dynamics. Yet to date, direct observation of the hydrodynamic coupling between artificial micro-rotors has been restricted by the details of the chosen drive, either through synchronization (using external magnetic fields) or confinement (using optical tweezers). Here we present a new active system that illuminates the interplay of rotation and translation in free rotors.
View Article and Find Full Text PDFTime-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it.
View Article and Find Full Text PDFUnder the influence of oscillatory shear, a monolayer of frictional granular disks exhibits two dynamical phase transitions: a transition from an initially disordered state to an ordered crystalline state and a dynamic active-absorbing phase transition. Although there is no reason a priori for these to be at the same critical point, they are. The transitions may also be characterized by the disk trajectories, which are nontrivial loops breaking time-reversal invariance.
View Article and Find Full Text PDFTwo-dimensional (2D) DNA origami that is capable of self-assembling into complex 2D and 3D geometries pave the way for a bottom-up synthesis for various applications in nano/biotechnology. Here, we directly visualized the aqueous structure of 2D DNA origami cross-tiles and their assemblies using cryogenic electron microscopy. We uncovered flexible arms in cross-tile monomers and designated inter-tile folding.
View Article and Find Full Text PDFWhile motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
Artificial self-replication and exponential growth holds the promise of gaining a better understanding of fundamental processes in nature but also of evolving new materials and devices with useful properties. A system of DNA origami dimers has been shown to exhibit exponential growth and selection. Here we introduce mutation and growth advantages to study the possibility of Darwinian-like evolution.
View Article and Find Full Text PDFSphere packing is an ancient problem. The densest packing is known to be a face-centered cubic (FCC) crystal, with space-filling fraction ϕ_{FCC}=π/sqrt[18]≈0.74.
View Article and Find Full Text PDFThe programmability of DNA oligonucleotides has led to sophisticated DNA nanotechnology and considerable research on DNA nanomachines powered by DNA hybridization. Here, we investigate an extension of this technology to the micrometer-colloidal scale, in which observations and measurements can be made in real time/space using optical microscopy and holographic optical tweezers. We use semirigid DNA origami structures, hinges with mechanical advantage, self-assembled into a nine-hinge, accordion-like chemomechanical device, with one end anchored to a substrate and a colloidal bead attached to the other end.
View Article and Find Full Text PDFComputable information density (CID), the ratio of the length of a losslessly compressed data file to that of the uncompressed file, is a measure of order and correlation in both equilibrium and nonequilibrium systems. Here we show that correlation lengths can be obtained by decimation, thinning a configuration by sampling data at increasing intervals and recalculating the CID. When the sampling interval is larger than the system's correlation length, the data becomes incompressible.
View Article and Find Full Text PDFIn periodically sheared suspensions there is a dynamical phase transition, characterized by a critical strain amplitude γ_{c}, between an absorbing state where particle trajectories are reversible and an active state where trajectories are chaotic and diffusive. Repulsive nonhydrodynamic interactions between "colliding" particles' surfaces have been proposed as a source of this broken time reversal symmetry. A simple toy model called random organization qualitatively reproduces the dynamical features of this transition.
View Article and Find Full Text PDFColloidal synthesis is a powerful bottom-up approach for programmed self-assembly which holds promise for both research and industry. While diverse, each synthetic process is typically restricted to a specific chemistry. Many applications however require composite materials, whereas a chemical equilibrium can typically only match one material but not the other.
View Article and Find Full Text PDFWe introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results.
View Article and Find Full Text PDFDNA tensegrity triangles self-assemble into rhombohedral three-dimensional crystals via sticky ended cohesion. Crystals containing two-nucleotide (nt) sticky ends (GA:TC) have been reported previously, and those crystals diffracted to 4.9 Å at beamline NSLS-I-X25.
View Article and Find Full Text PDFSelf-replication and exponential growth are ubiquitous in nature but until recently there were few examples of artificial self-replication. Often replication is a templated process where a parent produces a single offspring, doubling the population in each generation. Many species however produce more than one offspring at a time, enabling faster population growth and higher probability of species perpetuation.
View Article and Find Full Text PDFNature self-assembles functional materials by programming flexible linear arrangements of molecules and then folding them to make 2D and 3D objects. To understand and emulate this process, we have made emulsion droplets with specific recognition and controlled valence. Uniquely monovalent droplets form dimers: divalent lead to polymer-like chains, trivalent allow for branching, and programmed mixtures of different valences enable a variety of designed architectures and the ability to subsequently close and open structures.
View Article and Find Full Text PDFA homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane.
View Article and Find Full Text PDF