Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI).
View Article and Find Full Text PDFThere is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand.
View Article and Find Full Text PDFModels of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14 blood cells.
View Article and Find Full Text PDFThere is a pressing clinical need to develop cell-based bone therapies due to a lack of viable, autologous bone grafts and a growing demand for bone grafts in musculoskeletal surgery. Such therapies can be tissue engineered and cellular, such as osteoblasts, combined with a material scaffold. Because mesenchymal stem cells (MSCs) are both available and fast growing compared to mature osteoblasts, therapies that utilize these progenitor cells are particularly promising.
View Article and Find Full Text PDFIn regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2018
Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.
View Article and Find Full Text PDF