Publications by authors named "Paul C Sternweis"

The Pleckstrin homology (PH) domains from the Lbc family of Rho Guanine Nucleotide Exchange Factors (Lbc RhoGEFs) interact with activated Rho family GTPases. All 7 Lbc RhoGEFs associate directly with activated Rho GTPases via their PH domains. However, the binding affinities between the PH domains and the GTPases vary greatly.

View Article and Find Full Text PDF

Rho family GTPases regulate a wide range of cellular processes. This includes cellular dynamics where three subfamilies, Rho, Rac, and Cdc42, are known to regulate cell shape and migration though coordinate action. Activation of Rho proteins largely depends on Rho Guanine nucleotide Exchange Factors (RhoGEFs) through a catalytic Dbl homology (DH) domain linked to a pleckstrin homology (PH) domain that subserves various functions.

View Article and Find Full Text PDF

PDZ domains are abundant protein interaction modules and typically recognize a short motif at the C terminus of their ligands, with a few residues in the motif endowing the binding specificity. The sequence-based rules, however, cannot fully account for the specificity between the vast number of PDZ domains and ligands in the cell. Plexins are transmembrane receptors that regulate processes such as axon guidance and angiogenesis.

View Article and Find Full Text PDF

The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF.

View Article and Find Full Text PDF

The monomeric Rho GTPases are essential for cellular regulation including cell architecture and movement. A direct mechanism for hormonal regulation of the RhoA-type GTPases is their modulation by the G12 and G13 proteins via RH (RGS homology) containing RhoGEFs. In addition to the interaction of the G protein α subunits with the RH domain, activated RhoA also binds to the pleckstrin homology (PH) domain of PDZRhoGEF.

View Article and Find Full Text PDF

Regulation of multiple adenylyl cyclases (AC) provides unique inputs to mediate the synthesis of cAMP, a ubiquitous second messenger that controls many aspects of cellular function. On stimulation by G(s), the activities of ACs can be further selectively modulated by other pathways to ensure precise control of intracellular cAMP responses to specific stimuli. Recently, we reported that one of the AC isoforms, AC7, is uniquely regulated by the G(13) pathway.

View Article and Find Full Text PDF

Pathogens use a variety of strategies to evade host immune defenses. A powerful way to suppress immune function is to increase intracellular concentrations of cAMP in host immune cells, which dampens inflammatory responses and prevents microbial killing. We found that the yeast cell wall extract, zymosan, is capable of increasing intracellular cAMP and activates the protein kinase A pathway in bone marrow derived macrophage (BMDM) cells from mice.

View Article and Find Full Text PDF

RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear.

View Article and Find Full Text PDF

p115-RhoGEF (p115) belongs to the family of RGS-containing guanine nucleotide exchange factors for Rho GTPases (RGS-RhoGEFs) that are activated by G12 class heterotrimeric G protein α subunits. All RGS-RhoGEFs possess tandemly linked Dbl-homology (DH) and plekstrin-homology (PH) domains, which bind and catalyze the exchange of GDP for GTP on RhoA. We have identified that the linker region connecting the N-terminal RGS-homology (RH) domain and the DH domain inhibits the intrinsic guanine nucleotide exchange (GEF) activity of p115, and determined the crystal structures of the DH/PH domains in the presence or absence of the inhibitory linker region.

View Article and Find Full Text PDF

The second messenger cAMP plays a critical role in regulating immune responses. Although well known for its immunosuppressive effect, cAMP is also required for the development of optimal immune responses. Thus, the regulation of this second messenger needs to be finely tuned and well balanced in a context dependent manner.

View Article and Find Full Text PDF

Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH.PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA.

View Article and Find Full Text PDF

A mathematical model of the G protein signaling pathway in RAW 264.7 macrophages downstream of P2Y(6) receptors activated by the ubiquitous signaling nucleotide uridine 5'-diphosphate is developed. The model, which is based on time-course measurements of inositol trisphosphate, cytosolic calcium, and diacylglycerol, focuses particularly on differential dynamics of multiple chemical species of diacylglycerol.

View Article and Find Full Text PDF

The activation of macrophages through Toll-like receptor (TLR) pathways leads to the production of a broad array of cytokines and mediators that coordinate the immune response. The inflammatory potential of this response can be reduced by compounds, such as prostaglandin E(2), that induce the production of cyclic adenosine monophosphate (cAMP). Through experiments with cAMP analogs and multigene RNA interference (RNAi), we showed that key anti-inflammatory effects of cAMP were mediated specifically by cAMP-dependent protein kinase (PKA).

View Article and Find Full Text PDF

Cellular signal transduction machinery integrates information from multiple inputs to actuate discrete cellular behaviors. Interaction complexity exists when an input modulates the output behavior that results from other inputs. To address whether this machinery is iteratively complex--that is, whether increasing numbers of inputs produce exponential increases in discrete cellular behaviors--we examined the modulated secretion of six cytokines from macrophages in response to up to five-way combinations of an agonist of Toll-like receptor 4, three cytokines, and conditions that activated the cyclic adenosine monophosphate pathway.

View Article and Find Full Text PDF

G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward Galpha13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP*AlF (transition state) and GTPgammaS (Michaelis complex).

View Article and Find Full Text PDF

Regulation of intracellular cAMP by multiple pathways enables differential function of this ubiquitous second messenger in a context-dependent manner. Modulation of G(s)-stimulated intracellular cAMP has long been known to be modulated by the G(i) and G(q)/Ca(2+) pathways. Recently, the G(13) pathway was also shown to facilitate cAMP responses in murine macrophage cells.

View Article and Find Full Text PDF

Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G protein-coupled receptors (GPCRs) in raising intracellular free Ca(2+). To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca(2+) response to GPCR ligands.

View Article and Find Full Text PDF

Monomeric Rho GTPases regulate cellular dynamics through remodeling of the cytoskeleton, modulation of immediate signaling pathways, and longer-term regulation of gene transcription. One family of guanine nucleotide exchange factors for Rho proteins (RhoGEFs) provides a direct pathway for regulation of RhoA by cell surface receptors coupled to heterotrimeric G proteins. Some of these RhoGEFs also contain RGS domains that can attenuate signaling by the G(12) and G(13) proteins.

View Article and Find Full Text PDF

Regulation of intracellular cyclic adenosine 3 ',5 '-monophosphate (cAMP) is integral in mediating cell growth, cell differentiation, and immune responses in hematopoietic cells. To facilitate studies of cAMP regulation we developed a BRET (bioluminescence resonance energy transfer) sensor for cAMP, CAMYEL (cAMP sensor using YFP-Epac-RLuc), which can quantitatively and rapidly monitor intracellular concentrations of cAMP in vivo. This sensor was used to characterize three distinct pathways for modulation of cAMP synthesis stimulated by presumed G(s)-dependent receptors for isoproterenol and prostaglandin E(2).

View Article and Find Full Text PDF

Cellular information processing requires the coordinated activity of a large network of intracellular signalling pathways. Cross-talk between pathways provides for complex non-linear responses to combinations of stimuli, but little is known about the density of these interactions in any specific cell. Here, we have analysed a large-scale survey of pathway interactions carried out by the Alliance for Cellular Signalling (AfCS) in RAW 264.

View Article and Find Full Text PDF

p115RhoGEF, a guanine nucleotide exchange factor (GEF) for Rho GTPase, is also a GTPase-activating protein (GAP) for G12 and G13 heterotrimeric Galpha subunits. The GAP function of p115RhoGEF resides within the N-terminal region of p115RhoGEF (the rgRGS domain), which includes a module that is structurally similar to RGS (regulators of G-protein signaling) domains. We present here the crystal structure of the rgRGS domain of p115RhoGEF in complex with a chimera of Galpha13 and Galphai1.

View Article and Find Full Text PDF

Given recent efforts to determine the sequence information on thousands of genes in the human genome, the current challenge is to identify the functions of these genes, including those encoding the regulator of G-protein signaling protein gene superfamily, and to establish their roles in particular signaling pathways in a native system. Increasingly, reverse genetic approaches are being used to address these questions. This article compares two powerful approaches [ribozyme and "short interfering" RNA (siRNA) techniques] under identical conditions for the first report on the suppression of endogenous RGS domain-containing RhoGEFs.

View Article and Find Full Text PDF

Thrombin and lysophosphatidic acid (LPA) receptors play important roles in vascular biology, development, and cancer. These receptors activate rho via G(12/13) family heterotrimeric G proteins, which are known to directly activate three distinct rho guanine nucleotide exchange factors (rhoGEFs) that contain a regulator of G protein signaling (RGS) domain (RGS-rhoGEFs). However, it is not known which, if any, of these RGS-rhoGEFs (LARG (leukemia-associated rhoGEF), p115rhoGEF, or PDZrhoGEF) plays a role in G protein-coupled receptor-stimulated rho signaling.

View Article and Find Full Text PDF

MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that can regulate the c-Jun amino-terminal kinase (JNK) MAP kinase cascade. MEKK1 is comprised of a kinase domain and a long amino-terminal regulatory domain. This amino-terminal domain has a scaffold function in that it can assemble modules of the JNK and ERK MAP kinase cascades.

View Article and Find Full Text PDF

Structural requirements for function of the Rho GEF (guanine nucleotide exchange factor) regulator of G protein signaling (rgRGS) domains of p115RhoGEF and homologous exchange factors differ from those of the classical RGS domains. An extensive mutagenesis analysis of the p115RhoGEF rgRGS domain was undertaken to determine its functional interface with the Galpha(13) subunit. Results indicate that there is global resemblance between the interaction surface of the rgRGS domain with Galpha(13) and the interactions of RGS4 and RGS9 with their Galpha substrates.

View Article and Find Full Text PDF