Interface-induced modifications of the electronic, magnetic, and lattice degrees of freedom drive an array of novel physical properties in oxide heterostructures. Here, large changes in metal-oxygen band hybridization, as measured in the oxygen ligand hole density, are induced as a result of interfacing two isovalent correlated oxides. Using resonant X-ray reflectivity, a superlattice of SrFeO and CaFeO is shown to exhibit an electronic character that spatially evolves from strongly O-like in SrFeO to strongly Fe-like in CaFeO .
View Article and Find Full Text PDFGraphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, 'ripening'; domain boundary motion within islands; and continuous lattice rotation of entire domains.
View Article and Find Full Text PDF