Publications by authors named "Paul C P Watts"

We report substantial improvement of the field emission properties from aligned carbon nanotubes grown on aligned carbon nanofibres by a two-stage plasma enhanced chemical vapour deposition (PECVD) process. The threshold field decreased from 15.0 to 3.

View Article and Find Full Text PDF

We report the electrical characterization of single-walled carbon nanotubes (SWCNTs) trapped between two electrodes by dielectrophoresis (DEP). At high frequency, SWCNTs collected by DEP are expected to be of metallic type. Indeed current-voltage (I-V) measurements for devices made at 10 MHz show high values of conductivity and exhibit metallic behavior with linear and symmetric electrical features attributed to ohmic conduction.

View Article and Find Full Text PDF

This paper presents the results of the first human trials with the ENOBIO electrophysiology electrode prototype plus the initial results of a new wireless prototype with flexible electrodes based on the same platform. The results indicate that a dry active electrode that employs a CNT array as the electrode interface can perform on a par with traditional "wet" electrodes for the recording of EEG, ECG, EOG and EMG. We also demonstrate a new platform combining wireless technology plus flexible electrodes for improved comfort for applications that take advantage of the dry electrode concept.

View Article and Find Full Text PDF

We describe the development and first tests of ENOBIO, a dry electrode sensor concept for biopotential applications. In the proposed electrodes the tip of the electrode is covered with a forest of multi-walled carbon nanotubes (CNTs) that can be coated with Ag/AgCl to provide ionic-electronic transduction. The CNT brush-like structure is to penetrate the outer layers of the skin improving electrical contact as well as increase the contact surface area.

View Article and Find Full Text PDF