T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues.
View Article and Find Full Text PDFThe chronic neuro-inflammatory character of multiple sclerosis (MS) suggests that the natural process to resolve inflammation is impaired. This protective process is orchestrated by specialized pro-resolving lipid mediators (SPMs), but to date, the role of SPMs in MS remains largely unknown. Here, we provide in vivo evidence that treatment with the SPM lipoxin A (LXA) ameliorates clinical symptoms of experimental autoimmune encephalomyelitis (EAE) and inhibits CD4 and CD8 T cell infiltration into the central nervous system (CNS).
View Article and Find Full Text PDFObjective: Recently, we observed that the specialized proresolving mediator (SPM) entity resolvin D1 activates lipoxin A/formyl peptide receptor 2 (ALX/FPR2), which facilitates cardiac healing and persistent inflammation is a hallmark of impaired cardiac repair in aging. Splenic leukocyte-directed SPMs are essential for the safe clearance of inflammation and cardiac repair after injury; however, the target of SPMs remains undefined in cardiac healing and repair.
Methods: To define the mechanistic basis of ALX/FPR2 as a resolvin D1 target, ALX/FPR2-null mice were examined extensively.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFChronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression.
View Article and Find Full Text PDFTargeting hypoxia-sensitive pathways in immune cells is of interest in treating diseases. Here, we demonstrate that physiologic hypoxia (1% O), as encountered in bone marrow and spleen, accelerates human M2 macrophage efferocytosis of apoptotic-neutrophils and senescent erythrocytes via lipolysis-dependent biosynthesis of specialized pro-resolving mediators (SPMs), i.e.
View Article and Find Full Text PDFResolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes.
View Article and Find Full Text PDFBackground: Cysteinyl leukotrienes (CysLTs) are potent prophlogistic mediators in asthmatic patients; however, inhibition of CysLT receptor 1 is not a consistently effective treatment, suggesting additional regulatory mechanisms. Other cysteinyl-containing lipid mediators (LMs) derived from docosahexaenoic acid, namely maresin conjugates in tissue regeneration (MCTRs), were recently discovered. Therefore their production and actions in the lung are of considerable interest.
View Article and Find Full Text PDFResolution of inflammation is an active process regulated by specialized proresolving mediators where we identified 3 new pathways producing allylic epoxide-derived mediators that stimulate regeneration [, peptido-conjugates in tissue regeneration (CTRs)]. Here, using self-limited peritonitis in mice, we identified endogenous maresin (MaR) CTR (MCTR), protectin (PD) CTR (PCTR), and resolvin CTR in infectious peritoneal exudates and distal spleens, as well as investigated enzymes involved in their biosynthesis. PCTRs were identified to be temporally regulated in peritoneal exudates and spleens.
View Article and Find Full Text PDFChanges in the intestinal lymphatic vascular system, such as lymphatic obstruction, are characteristic features of inflammatory bowel diseases. The lymphatic vasculature forms a conduit to enable resolution of inflammation; this process is driven by specialized endogenous proresolving mediators (SPMs). To evaluate contributions of lymphatic obstruction to intestinal inflammation and to study profiles of SPMs, we generated a novel animal model of lymphatic obstruction using African green monkeys.
View Article and Find Full Text PDFDeep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use.
View Article and Find Full Text PDFSpecialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B, 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA, 18-HEPE, and 17-HDHA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor.
View Article and Find Full Text PDFAlthough nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia.
View Article and Find Full Text PDFBackground: Psoriasis (PSO) is an immune-mediated inflammatory disease associated with metabolic and cardiovascular comorbidities. It is now known that resolution of inflammation is an active process locally controlled by specialized proresolving mediators (SPMs), named resolvins (Rvs), protectins, and maresins.
Objective: It is unknown whether these potent lipid mediators (LMs) are involved in PSO pathophysiology and if the skin and blood have disease-specific SPMs phenotype profiles.
Resolvin conjugates in tissue regeneration (RCTRs) are new chemical signals that accelerate resolution of inflammation, infection, and tissue regeneration. Herein, using liquid chromatography-tandem mass spectrometry-based metabololipidomics, we identified RCTRs in human spleen, lymph node, bone marrow, and brain. In human spleen incubated with Staphylococcus aureus, endogenous RCTRs were increased along with conversion of deuterium-labeled docosahexaenoic acid, conferring pathway activation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2018
Metabolomics enables a systems approach to interrogate the bioactive mediators, their pathways and further metabolites involved in the physiology and pathophysiology of human and animal tissues. New metabololipidomic approaches with mass spectrometry presented in this brief review can now be utilized for the identification and profiling of lipid mediator networks that control inflammation-resolution in human blood and healthy and diseased solid tissues. Coagulation of blood is a protective response that prevents excessive bleeding on injury of blood vessels.
View Article and Find Full Text PDFSpecialized proresolving mediators (SPMs) decrease NF-κB activity to prevent excessive tissue damage and promote the resolution of acute inflammation. Mechanisms for NF-κB regulation by SPMs remain to be determined. In this study, after LPS challenge, the SPMs 15-epi-lipoxin A (15-epi-LXA), resolvin D1, resolvin D2, resolvin D3, and 17-epi-resolvin D1 were produced in vivo in murine lungs.
View Article and Find Full Text PDFInflammation promotes healing in myocardial infarction but, if unresolved, leads to heart failure. To define the inflammatory and resolving responses, we quantified leukocyte trafficking and specialized proresolving mediators (SPMs) in the infarcted left ventricle and spleen after myocardial infarction, with the goal of distinguishing inflammation from its resolution. Our data suggest that the spleen not only served as a leukocyte reservoir but also was the site where SPMs were actively generated after coronary ligation in mice.
View Article and Find Full Text PDFLocal production and downstream metabolism of specialized proresolving lipid mediators (SPMs) are pivotal in regulating their biological actions during resolution of inflammation. Resolvin D4 (RvD4: 4S,5R,17S-trihydroxydocosa-6E,8E,10Z,13Z,15E,19Z hexaenoic acid) is one of the more recently elucidated SPMs with complete stereochemistry biosynthesized from docosahexaenoic acid . Here, we report a new multimilligram commercial synthesis that afforded enough material for matching, validation, and further evaluation of RvD4 functions.
View Article and Find Full Text PDFProinflammatory eicosanoids (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPM) are temporally regulated during infections. Here we show that human macrophage phenotypes biosynthesize unique lipid mediator signatures when exposed to pathogenic bacteria. E.
View Article and Find Full Text PDF