Ebolaviruses, marburgviruses, and henipaviruses are zoonotic pathogens belonging to the Filoviridae and Paramyxoviridae families. They exemplify viruses that continue to spill over into the human population, causing outbreaks characterized by high mortality and significant clinical sequelae in survivors of infection. There are currently no approved small molecule therapeutics for use in humans against these viruses.
View Article and Find Full Text PDFInfluenza virus, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, and rhinoviruses are among the most common viruses causing mild seasonal colds. These RNA viruses can also cause lower respiratory tract infections leading to bronchiolitis and pneumonia. Young children, the elderly, and patients with compromised cardiac, pulmonary, or immune systems are at greatest risk for serious disease associated with these RNA virus respiratory infections.
View Article and Find Full Text PDFParamyxoviruses represent a family of RNA viruses causing significant human diseases. These include measles virus, the most infectious virus ever reported, in addition to parainfluenza virus, and other emerging viruses. Paramyxoviruses likely share common replication machinery but their mechanisms of RNA biosynthesis activities and details of their complex polymerase structures are unknown.
View Article and Find Full Text PDFHuman respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation.
View Article and Find Full Text PDFALS-8112 is the parent molecule of ALS-8176, a first-in-class nucleoside analog prodrug effective in the clinic against respiratory syncytial virus (RSV) infection. The antiviral activity of ALS-8112 is mediated by its 5'-triphosphate metabolite (ALS-8112-TP, or 2'F-4'ClCH2-cytidine triphosphate) inhibiting the RNA polymerase activity of the RSV L-P protein complex through RNA chain termination. Four amino acid mutations in the RNA-dependent RNA polymerase (RdRp) domain of L (QUAD: M628L, A789V, L795I, and I796V) confer in vitro resistance to ALS-8112-TP by increasing its discrimination relative to natural CTP.
View Article and Find Full Text PDFThe chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly.
View Article and Find Full Text PDF