Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH.
View Article and Find Full Text PDFWe report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with Φ of up to 35%, and in solution, with Φ of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % V of the P^P ligand.
View Article and Find Full Text PDFThe hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
Amides are one of the most ubiquitous functional groups in synthetic and medicinal chemistry. Novel and rapid synthesis of amides remains in high demand. In this communication, a general and efficient procedure for branch-selective hydroamidation of vinylarenes with hydroxyamine derivatives enabled by copper catalysis has been developed for the first time.
View Article and Find Full Text PDFA convenient synthesis of enantiopure P-chirogenic diphosphazanes incorporating bulky bisphenol and 1,1'-bi-2-naphthol-derived substituents via the functionalization of a readily accessible enantiopure lithium phosphinoamide with chlorophosphoridites was developed. Since the product requires no subsequent deprotection, the protocol provides an easy, convenient synthesis of P-chirogenic ligands on the gram scale. The ligands were applied in the Rh-catalyzed asymmetric hydrogenation of benchmark substrates furnishing enantiomeric excess values up to 96%.
View Article and Find Full Text PDFReductive aminations constitute an important class of reactions widely applied in research laboratories and industries for the synthesis of amines as well as pharmaceuticals, agrochemicals and biomolecules. In particular, catalytic reductive aminations using molecular hydrogen are highly valued and essential for the cost-effective and sustainable production of different kinds of amines and their functionalization. These reactions couple easily accessible carbonyl compounds (aldehydes or ketones) with ammonia, amines or nitro compounds in the presence of suitable catalysts and hydrogen that enable the preparation of linear and branched primary, secondary and tertiary amines including N-methylamines and molecules used in life science applications.
View Article and Find Full Text PDFThe development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer.
View Article and Find Full Text PDFThe borocarbonylative coupling of unactivated alkenes with alkyl halides remains a challenge. In this communication, a Cu-catalyzed borocarbonylative coupling of unactivated alkenes with alkyl halides for the synthesis of β-boryl ketones has been developed. A broad range of β-boryl ketone derivatives was prepared in moderate to excellent yields with complete regioselectivity.
View Article and Find Full Text PDFWe report the synthesis of generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-,-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia.
View Article and Find Full Text PDFThe selective catalytic hydrogenation of nitriles represents an important but challenging transformation for many homogeneous and heterogeneous catalysts. Herein, we report the efficient and modular solid-phase synthesis of immobilized Triphos-type ligands in very high yields, involving only minimal work-up procedures. The corresponding supported ruthenium-Triphos catalysts are tested in the hydrogenation of various nitriles.
View Article and Find Full Text PDFIn contrast to their symmetrical analogues, nonsymmetrical PNP-type ligand motifs have been less investigated despite the modular pincer structure. However, the introduction of mixed phosphorus donor moieties provides access to a larger variety of PNP ligands. Herein, a facile solid-phase synthesis approach towards a diverse PNP-pincer ligand library of 14 members is reported.
View Article and Find Full Text PDFUse of ZrO /SiO as a solid acid catalyst in the ring-opening of biobased γ-valerolactone with methanol in the gas phase leads to mixtures of methyl 2-, 3-, and 4-pentenoate (MP) in over 95 % selectivity, containing a surprising 81 % of M4P. This process allows the application of a selective hydroformylation to this mixture to convert M4P into methyl 5-formyl-valerate (M5FV) with 90 % selectivity. The other isomers remain unreacted.
View Article and Find Full Text PDFThe production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H. Key to success for this synthesis is the use of a simple RuCl(PPh) catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions.
View Article and Find Full Text PDFA dimethylxanthene-based phosphine/borane frustrated Lewis pair (FLP) is shown to effect reversible C-H activation, cleaving phenylacetylene, PhCCH, to give an equilibrium mixture of the free FLP and phosphonium acetylide in CD Cl solution at room temperature. This system also reacts with B-H bonds although in a different fashion: reactions with HBpin and HBcat proceed via C-B/B-H metathesis, leading to replacement of the -B(C F ) Lewis acid component by -Bpin/-Bcat, and transfer of HB(C F ) to the phosphine Lewis base. This transformation underpins the ability of the FLP to catalyze the hydroboration of alkynes by HBpin: the active species is derived from the HB(C F ) fragment generated in this exchange process.
View Article and Find Full Text PDFThe fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins.
View Article and Find Full Text PDFThe hydrogenation of dicarboxylic acids and their esters in the presence of anilines provides a new synthesis of heterocycles. [Ru(acac)] and 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) gave good to excellent yields of the cyclic amines at 220 °C. When aqueous ammonia was used with dimethyl 1,6-hexadienoic acid, ε-caprolactam was obtained in good yield.
View Article and Find Full Text PDFArtificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions.
View Article and Find Full Text PDFA one-pot two-step degradation of lignin β-O-4 model compounds initiated by preferred oxidation of the primary over the secondary hydroxyl groups with a TEMPO/DAIB system has been developed [TEMPO=2,2,6,6-tetramethylpiperidine-N-oxyl, DAIB=(diacetoxy)iodobenzene]. The oxidised products are then cleaved by proline-catalysed retro-aldol reactions. This degradation methodology produces simple aromatics in good yields from lignin model compounds at room temperature with an extension to organosolv beech-wood lignin (L1) resulting in known cleavage products.
View Article and Find Full Text PDFThe depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) ).
View Article and Find Full Text PDFThe development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis.
View Article and Find Full Text PDFIn spite of decades of research in the field of homogeneous asymmetric catalysis the discovery of new high performance catalysts still relies heavily on trial-and-error. There is still a lack of efficient combinatorial methods which enable the synthesis and screening of vast ligand libraries, especially for bidentate phosphorus ligands. Here we present a highly modular solid-phase synthetic approach which provides facile access to libraries of phosphine-phosphite ligands in quantitative yield requiring only minimal work-up.
View Article and Find Full Text PDFOxidation reactions are an important part of the synthetic organic chemist's toolkit and continued advancements have, in many cases, resulted in high yields and selectivities. This review aims to give an overview of the current state-of-the-art in oxygenation reactions using both chemical and enzymatic processes, the design principles applied to date and a possible future in the direction of hybrid catalysts combining the best of chemical and natural design.
View Article and Find Full Text PDFWide bite angle diphosphine ligands were used to prepare [(diphosphine)M(2-(diphenylphosphino)pyridine)](2+) complexes (M = Pd, Pt). Except for the ligand with the largest bite angle, 2-(diphenylphosphino)pyridine coordinates in a bidentate mode leading to bis-chelate complexes. In the case of Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene, βn = 111°) two types of complexes are formed, in which 2-(diphenylphosphino)pyridine coordinates in a mono- or bidentate fashion, respectively.
View Article and Find Full Text PDFThe cyclic peptide gramicidin S was used as a rigid template to provide novel peptide-based bisphosphine ligands for transition metal catalysis. Two bisphosphine-coordinated Rh(I) complexes allowed asymmetric hydrogenation with 10-52% ee and the corresponding Pd(II) analogues catalysed asymmetric allylic alkylation with 13-15% ee.
View Article and Find Full Text PDFMany bioinspired transition-metal catalysts have been developed over the recent years. In this review the progress in the design and application of ligand systems based on peptides and DNA and the development of artificial metalloenzymes are reviewed with a particular emphasis on the combination of phosphane ligands with powerful molecular recognition and shape selectivity of biomolecules. The various approaches for the assembly of these catalytic systems will be highlighted, and the possibilities that the use of the building blocks of Nature provide for catalyst optimisation strategies are discussed.
View Article and Find Full Text PDF