Publications by authors named "Paul C Holland"

In response to a wound, astrocytes in culture extend microtubule-rich processes and polarize, orienting their centrosomes and Golgi apparatus woundside. β1 Integrin null astrocytes fail to extend processes toward the wound, and are disoriented, and often migrate away orthogonal, to the wound. The centrosome is unusually fragmented in β1 integrin null astrocytes.

View Article and Find Full Text PDF

Background: Efficient adenovirus (AdV)-mediated gene transfer is possible only in immature muscle or regenerating muscle, suggesting that a developmentally regulated event plays a major role in limiting AdV uptake in mature skeletal muscle. Previously, we showed that the expression of the primary coxsackie and adenovirus receptor (CAR) is severely down-regulated during muscle maturation and that, in muscle-specific CAR transgenic mice, there is significant enhancement of AdV-mediated gene transfer to mature skeletal muscle.

Methods: To evaluate whether increasing CAR expression can also augment gene transfer to dystrophic muscle that has many regenerating fibers, we crossed CAR transgenics with dystrophin-deficient mice (mdx/CAR).

View Article and Find Full Text PDF

Adenoviral vectors that use the coxsackievirus and adenovirus receptor do not transduce mature muscle efficiently. Group B adenoviruses use CD46 as their cell attachment receptor. To evaluate the utility of vectors based on group B adenoviruses for gene transfer to human skeletal muscle, we assessed the expression of CD46 in biopsied normal skeletal muscle samples and in muscles from patients with Duchenne muscular dystrophy.

View Article and Find Full Text PDF

The Coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule that is highly expressed in the developing brain. CAR is enriched in growth cone particles (GCP) after subcellular fractionation. In GCP, we identified actin as an interaction partner of the cytoplasmic domain of CAR.

View Article and Find Full Text PDF

The Coxsackie and adenovirus receptor (CAR), a cell adhesion molecule of the immunoglobulin superfamily, inhibits cell growth of a variety of tumors. The cytoplasmic domain of CAR has been implicated in decreased invasion and intracerebral growth of human U87 glioma cells. Using affinity binding, we identified tubulin as an interaction partner for the cytoplasmic domain of CAR.

View Article and Find Full Text PDF

The Coxsackie and adenovirus receptor (CAR), a cell adhesion molecule of the immunoglobulin superfamily, is usually confined to the sarcolemma at the neuromuscular junction in mature skeletal muscle fibers. Previously, we reported that adenovirus-mediated gene transfer is greatly facilitated in hemizygous transgenic mice with extrasynaptic CAR expression driven by a muscle-specific promoter. However, in the present study, when these mice were bred to homozygosity, they developed a severe myopathic phenotype and died prematurely.

View Article and Find Full Text PDF

Background: The Coxsackie and adenovirus receptor (CAR) has a restricted expression pattern in the adult. In skeletal muscle, although CAR is expressed in immature fibers, its transcript levels are barely detectable in mature muscle. This is in contrast to the robust expression observed in the heart.

View Article and Find Full Text PDF

Expression of the coxsackie and adenovirus receptor (CAR) is downregulated in malignant glioma cell lines and is barely detectable in high-grade primary astrocytoma (glioblastoma multiforme). We determined the effect of forced CAR expression on the invasion and growth of the human glioma cell line U87-MG, which does not express any CAR. Although retrovirally mediated expression of full-length CAR in U87-MG cells did not affect monolayer growth in vitro, it did reduce glioma cell invasion in a 3-dimensional spheroid model.

View Article and Find Full Text PDF