A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.
View Article and Find Full Text PDFGrating couplers are widely used in integrated optics to generate free-space beams and facilitate localized interactions with systems such as atom or ion traps. However, etched devices often exhibit small-scale inconsistencies; exacerbated by the high index contrast of the devices, this can lead to phase errors, limiting devices to a sub-millimeter scale. Here we present the first demonstration, to our knowledge, of tilted, out-of-plane blazed gratings in planar silica fabricated by UV inscription using a 213 nm laser.
View Article and Find Full Text PDFIn this paper we present the first example of waveguides fabricated by UV writing in non-hydrogen loaded Ge-doped planar silica with 213 nm light. Single mode waveguides were fabricated and the numerical apertures and mode field diameters were measured for a range of writing fluences. A peak index change of 5.
View Article and Find Full Text PDFWe present the first demonstration of integrated waveguides in planar silica devices fabricated using direct UV writing with 213 nm laser light. Waveguides were produced with different writing fluences and the NA and MFD of each were measured. Single mode waveguides were achieved at fluence values one-tenth that typically required when operating with a 244 nm laser, allowing for more rapid fabrication.
View Article and Find Full Text PDFWe demonstrate thermal classification of sequentially written fiber Bragg gratings. This Letter presents a process to determine the type of fiber Bragg grating written in SMF28 and GF4A by introducing the gratings to thermal treatment. This technique can be applied to several approaches based on sequential writing, including the small spot direct ultraviolet writing technique.
View Article and Find Full Text PDFA route to monitor external refractive indices greater than the core index of the waveguide is presented. Initial application utilizes an integrated optical fibre (IOF) platform due to its potential for use in harsh environment sensing. IOF is fabricated using a bespoke flame hydrolysis deposition process to fuse an optical fibre to a planar substrate achieving an optical quality, ruggedized glass layer between the fibre and substrate was fabricated.
View Article and Find Full Text PDFThis Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol.
View Article and Find Full Text PDFIn this Letter, experimental evidence is provided for an enhanced thermal sensitivity for a double thermal regeneration feature in fiber Bragg gratings fabricated by direct ultraviolet (UV) writing. Here 47 gratings of varying fluence and wavelength were written along a double-clad, germanium-doped core fiber. Subsequently thermal processing without hydrogen loading the fiber was performed and thermal treatment was carried out in a pure oxygen environment.
View Article and Find Full Text PDF