Publications by authors named "Paul C Begeman"

Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a virtual tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model.

View Article and Find Full Text PDF

Growth plate (GP) is a type of tissue widely found in child's immature skeleton. It may have significant influence on the overall injury pattern since it has distinguishing mechanical properties compared to the surrounding bony tissue. For more accurate material modeling and advanced pediatric human body modeling, it is imperative to investigate the material property of GPs in different loading conditions.

View Article and Find Full Text PDF

Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph.

View Article and Find Full Text PDF

The purpose of this study was to determine the effect of head-neck position on cervical facet stretch during low speed rear end impact. Twelve tests were conducted on four Post Mortem Human Subjects (PMHS) in a generic bucket seat environment. Three head positions, namely Normal (neutral), Zero Clearance between the head and head restraint, and Body Forward positions were tested.

View Article and Find Full Text PDF