p300 () and CBP () are transcriptional coactivators with histone acetyltransferase activity. Various β-cell transcription factors can recruit p300/CBP, and thus the coactivators could be important for β-cell function and health in vivo. We hypothesized that p300/CBP contribute to the development and proper function of pancreatic islets.
View Article and Find Full Text PDFCREB-binding protein (CBP, CREBBP, KAT3A) and its closely related paralogue p300 (EP300, KAT3B), together termed p300/CBP, are histone/lysine acetyl-transferases that control gene expression by modifying chromatin-associated proteins. Here, we report roles for both of these chromatin-modifying enzymes in mouse sex determination, the process by which the embryonic gonad develops into a testis or an ovary. By targeting gene ablation to embryonic gonadal somatic cells using an inducible Cre line, we show that gonads lacking either gene exhibit major abnormalities of XY gonad development at 14.
View Article and Find Full Text PDFCREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes.
View Article and Find Full Text PDFInactivating mutations of the CREBBP acetyltransferase are highly frequent in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), the two most common germinal center (GC)-derived cancers. However, the role of CREBBP inactivation in lymphomagenesis remains unclear. Here, we show that CREBBP regulates enhancer/super-enhancer networks with central roles in GC/post-GC cell fate decisions, including genes involved in signal transduction by the B-cell receptor and CD40 receptor, transcriptional control of GC and plasma cell development, and antigen presentation.
View Article and Find Full Text PDFAutism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
In the fasted state, increases in catecholamine signaling promote adipocyte function via the protein kinase A-mediated phosphorylation of cyclic AMP response element binding protein (CREB). CREB activity is further up-regulated in obesity, despite reductions in catecholamine signaling, where it contributes to the development of insulin resistance. Here we show that obesity promotes the CREB binding protein (CBP)-mediated acetylation of CREB at Lys136 in adipose.
View Article and Find Full Text PDFGenome-wide distribution of histone H3K18 and H3K27 acetyltransferases, CBP (CREBBP) and p300 (EP300), is used to map enhancers and promoters, but whether these elements functionally require CBP/p300 remains largely uncertain. Here we compared global CBP recruitment with gene expression in wild-type and CBP/p300 double-knockout (dKO) fibroblasts. ChIP-seq using CBP-null cells as a control revealed nearby CBP recruitment for 20% of constitutively-expressed genes, but surprisingly, three-quarters of these genes were unaffected or slightly activated in dKO cells.
View Article and Find Full Text PDFT-regulatory (Treg) cells are important to immune homeostasis, and Treg cell deficiency or dysfunction leads to autoimmune disease. A histone/protein acetyltransferase (HAT), p300, was recently found to be important for Treg function and stability, but further insights into the mechanisms by which p300 or other HATs affect Treg biology are needed. Here we show that CBP, a p300 paralog, is also important in controlling Treg function and stability.
View Article and Find Full Text PDFMED23, a subunit of the Mediator coactivator complex, is important for the expression of a subset of MAPK/ERK pathway-responsive genes, the constituents of which vary between cell types for reasons that are not completely clear. MAPK/ERK pathway-dependent processes are essential for T-cell development and function, but whether MED23 has a role in this context is unknown. We generated Med23 conditional knockout mice and induced Med23 deletion in early T-cell development using the lineage specific Lck-Cre transgene.
View Article and Find Full Text PDFThe liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver's architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases.
View Article and Find Full Text PDFAdult blood cell production or definitive hematopoiesis requires the transcription factor c-Myb. The closely related KAT3 histone acetyltransferases CBP (CREBBP) and p300 (EP300) bind c-Myb through their KIX domains and mice homozygous for a p300 KIX domain mutation exhibit multiple blood defects. Perplexingly, mice homozygous for the same KIX domain mutation in CBP have normal blood.
View Article and Find Full Text PDFLens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression.
View Article and Find Full Text PDFForkhead box P3 (Foxp3)(+) T regulatory (T(reg)) cells maintain immune homeostasis and limit autoimmunity but can also curtail host immune responses to various types of tumors. Foxp3(+) T(reg) cells are therefore considered promising targets to enhance antitumor immunity, and approaches for their therapeutic modulation are being developed. However, although studies showing that experimentally depleting Foxp3(+) T(reg) cells can enhance antitumor responses provide proof of principle, these studies lack clear translational potential and have various shortcomings.
View Article and Find Full Text PDFSmall-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million base pairs.
View Article and Find Full Text PDFAging (Albany NY)
April 2012
Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300.
View Article and Find Full Text PDFOpposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucagon-responsive factor CREB is not limiting for liver gluconeogenesis, whereas a second model posits that Ser436 in the CH1 (TAZ1) domain of CBP is required for insulin and the antidiabetic drug metformin to inhibit CREB-mediated liver gluconeogenesis.
View Article and Find Full Text PDFRelapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail.
View Article and Find Full Text PDFB-cell non-Hodgkin's lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types--follicular lymphoma and diffuse large B-cell lymphoma--harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes.
View Article and Find Full Text PDFHistone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting proteins including transcription factors known to play a role in long-term memory formation.
View Article and Find Full Text PDFThe histone acetyltransferase coactivators CBP (CREBBP) and p300 (EP300) have more than 400 described protein interaction partners and are implicated in numerous transcriptional pathways. We have shown previously that CBP and p300 double knockout mutations in mouse embryonic fibroblasts (dKO MEFs) result in mixed effects on cAMP-inducible gene expression, with many CREB target genes requiring CBP/p300 for full expression, while others are unaffected or expressed better in their absence. Here we used CBP and p300 dKO MEFs to examine gene expression in response to four other signals: DNA damage (via p53), double-stranded RNA, serum, and retinoic acid.
View Article and Find Full Text PDFHistone acetyltransferases (HATs) GCN5 and PCAF (GCN5/PCAF) and CBP and p300 (CBP/p300) are transcription co-activators. However, how these two distinct families of HATs regulate gene activation remains unclear. Here, we show deletion of GCN5/PCAF in cells specifically and dramatically reduces acetylation on histone H3K9 (H3K9ac) while deletion of CBP/p300 specifically and dramatically reduces acetylations on H3K18 and H3K27 (H3K18/27ac).
View Article and Find Full Text PDFIt remains uncertain how the DNA sequence of mammalian genes influences the transcriptional response to extracellular signals. Here, we show that the number of CREB-binding sites (CREs) affects whether the related histone acetyltransferases (HATs) CREB-binding protein (CBP) and p300 are required for endogenous gene transcription. Fibroblasts with both CBP and p300 knocked-out had strongly attenuated histone H4 acetylation at CREB-target genes in response to cyclic-AMP, yet transcription was not uniformly inhibited.
View Article and Find Full Text PDFOne general principle of gene regulation is that DNA-binding transcription factors modulate transcription by recruiting cofactors that modify histones and chromatin structure. A second implicit principle is that a particular cofactor is necessary at all the target genes where the cofactor is recruited. Increasingly, these principles do not appear to be absolute, as experimentally defined relationships between transcription, cofactors and chromatin modification grow in complexity.
View Article and Find Full Text PDFDefining the chromatin modifications and transcriptional mechanisms that direct the development of different T-cell lineages is a major challenge in immunology. The transcriptional coactivators CREB binding protein (CBP) and the closely related p300, which comprise the KAT3 family of histone/protein lysine acetyltransferases, interact with over 50 T-lymphocyte-essential transcriptional regulators. We show here that CBP, but not p300, modulates the thymic development of conventional adaptive T cells versus those having unconventional innate functions.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal synaptic plasticity by HDAC inhibitors is mediated by the transcription factor cAMP response element-binding protein (CREB) and the recruitment of the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CBP) via the CREB-binding domain of CBP.
View Article and Find Full Text PDF