Publications by authors named "Paul Brian"

Proteins are exposed to hydrostatic pressure (HP) in a variety of ecosystems as well as in processing steps such as freeze-thaw, cell disruption, sterilization, and homogenization, yet pressure effects on protein-protein interactions (PPIs) remain underexplored. With the goal of contributing toward the expanded use of HP as a fundamental control parameter in protein research, processing, and engineering, small-angle X-ray scattering was used to examine the effects of HP and ionic strength on ovalbumin, a model protein. Based on an extensive data set, we develop an empirical method for scaling PPIs to a master curve by combining HP and osmotic effects.

View Article and Find Full Text PDF

Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity properties, making them suitable candidates for applications such as interconnects and thermal conductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages, including patterning capabilities, cost-effectiveness, and scalability among the various methods for manufacturing Cu and W-based films and structures. In particular, SBAM material jetting techniques, such as inkjet printing (IJP), direct ink writing (DIW), and aerosol jet printing (AJP), present a promising approach for design freedom, low material wastes, and versatility as either stand-alone printers or integrated with powder bed-based metal additive manufacturing (MAM).

View Article and Find Full Text PDF

Introduction: Clinical markers of response in metastatic renal cell carcinoma (mRCC) are lacking. Low hemoglobin (Hb) is associated with poor outcomes in the IMDC risk score. This study evaluates the role of Hb as a marker of treatment outcomes in mRCC.

View Article and Find Full Text PDF

SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.

View Article and Find Full Text PDF

Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis.

View Article and Find Full Text PDF

This paper studied the feasibility of a new solution-processed method to manufacture black tungsten nanostructures by laser conversion of tungsten hexacarbonyl precursor on the Inconel 625 substrate under argon atmosphere at ambient pressure. The results show that sublimation of the precursor can be prevented if the decomposition temperature (>170 °C) is achieved using the laser heating method. Three different laser powers from 60-400 W were used to investigate the role of laser parameters on the conversion.

View Article and Find Full Text PDF

Background: Orofacial clefts (OFCs) are common birth defects with complex etiology. Genome wide association studies for OFC have identified SNPs in and near MAFB. MAFB is a transcription factor critical for structural development of digits, kidneys, skin, and brain.

View Article and Find Full Text PDF

A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating.

View Article and Find Full Text PDF

More than 1.2 million people worldwide require regular hemodialysis therapy to treat end stage renal failure. Current hemodialysis systems are too expensive to support at-home hemodialysis where more frequent and longer duration treatment can lead to better patient outcomes.

View Article and Find Full Text PDF

Background: A retrospective analysis was performed of 12 consecutive patients who received implant placement with concurrent restorations in the maxillary premolar region as part of the General Practice Residency Program. The emergence profile established during the healing phase was then captured using a customized impression coping prior to fabrication of the final restoration. The patients were followed for a period of at least 1 year.

View Article and Find Full Text PDF

The AcrAB-TolC multidrug efflux pump confers resistance to a wide variety of antibiotics and other compounds in Escherichia coli. Here we show that AcrZ (formerly named YbhT), a 49-amino-acid inner membrane protein, associates with the AcrAB-TolC complex. Co-purification of AcrZ with AcrB, in the absence of both AcrA and TolC, two-hybrid assays and suppressor mutations indicate that this interaction occurs through the inner membrane protein AcrB.

View Article and Find Full Text PDF

A54145 is a complex of lipopeptide antibiotics produced by Streptomyces fradiae. A54145 factors are structurally related to daptomycin, with four modified amino acids, only one of which is present in daptomycin. We generated three mutants defective in lptJ, lptK or lptL, whose gene products are involved in the formation of hydroxy-Asn(3) (hAsn(3)) and methoxy-Asp(9) (moAsp(9)).

View Article and Find Full Text PDF

A potent new lipopeptide antibiotic, A54145E(Asn(3)Asp(9)), was isolated from the fermentation broth of Streptomyces fradiae DA1489 engineered to delete genes encoding enzymes involved in hydroxylation of Asn(3) and methoxylation of Asp(9). The chemical structure predicted from the genetic changes in the biosynthetic pathway was determined by analyses of chemical transformations, D, L-amino acid quantitation by enantiomer labeling, tandem LC-MS/MS and 2D NMR techniques. These studies confirmed the primary amino acid sequence of A54145E(Asn(3)Asp(9)) predicted from the genetic engineering strategy, and also confirmed the structure and locations of three D-amino acids predicted from bioinformatic studies.

View Article and Find Full Text PDF

Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters.

View Article and Find Full Text PDF

A54145 factors are calcium-dependent lipopeptide antibiotics produced by Streptomyces fradiae NRRL 18160. A54145 is structurally related to the clinically important daptomycin, and as such may be a useful scaffold for the development of a novel lipopeptide antibiotic. We developed methods to genetically manipulate S.

View Article and Find Full Text PDF

Daptomycin is a cyclic lipopeptide antibiotic approved for the treatment of skin and skin structure infections caused by Gram-positive pathogens and for that of bacteremia and right-sided endocarditis caused by Staphylococcus aureus. Daptomycin failed to meet noninferiority criteria for the treatment of community-acquired pneumonia, likely due to sequestration in pulmonary surfactant. Many analogues of daptomycin have been generated by combinatorial biosynthesis, but only two displayed improved activity in the presence of bovine surfactant, and neither was as active as daptomycin in vitro.

View Article and Find Full Text PDF

Proteins of 50 or fewer amino acids are poorly characterized in all organisms. The corresponding genes are challenging to reliably annotate, and it is difficult to purify and characterize the small protein products. Due to these technical limitations, little is known about the abundance of small proteins, not to mention their biological functions.

View Article and Find Full Text PDF

The correct annotation of genes encoding the smallest proteins is one of the biggest challenges of genome annotation, and perhaps more importantly, few annotated short open reading frames have been confirmed to correspond to synthesized proteins. We used sequence conservation and ribosome binding site models to predict genes encoding small proteins, defined as having 16-50 amino acids, in the intergenic regions of the Escherichia coli genome. We tested expression of these predicted as well as previously annotated genes by integrating the sequential peptide affinity tag directly upstream of the stop codon on the chromosome and assaying for synthesis using immunoblot assays.

View Article and Find Full Text PDF

Genetic engineering has been applied to reprogramme non-ribosomal peptide synthetases (NRPSs) to produce novel antibiotics, but little is known about what determines the efficiency of production. We explored module exchanges at nucleotide sequences encoding interpeptide linkers in dptD, a gene encoding a di-modular NRPS subunit that incorporates 3-methylglutamic acid (3mGlu(12)) and kynurenine (Kyn(13)) into daptomycin. Mutations causing amino acid substitutions, deletions or insertions in the inter-module linker had no negative effects on lipopeptide yields.

View Article and Find Full Text PDF

Chromium Renderserver (CRRS) is software infrastructure that provides the ability for one or more users to run and view image output from unmodified, interactive OpenGL and X11 applications on a remote, parallel computational platform equipped with graphics hardware accelerators via industry-standard Layer 7 network protocols and client viewers. The new contributions of this work include a solution to the problem of synchronizing X11 and OpenGL command streams, remote delivery of parallel hardware accelerated rendering, and a performance analysis of several different optimizations that are generally applicable to a variety of rendering architectures. CRRS is fully operational, Open Source software.

View Article and Find Full Text PDF

Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion.

View Article and Find Full Text PDF

A nanofiltration method has been developed in a microfluidic format for the continuous-flow pressure-driven purification of half-generation poly(amidoamine) (PAMAM) dendrimers, a family of macromolecules characterized by highly branching structures radiating from a central core, without additional solvents or buffers. An organic solvent resistant nanofiltration membrane, STARMEM 122, has been fully integrated into a hard polymer microfluidic module by transmission laser welding. The membrane was initially characterized in a bench-top test fixture to determine the solvent permeance and percent rejection of a surrogate molecule, Rhodamine B, at lower than typical operating pressures (P<7 bar).

View Article and Find Full Text PDF

Three daptomycin-related lipopeptides, A21978C1-3(d-Asn11) (2-4), were purified from the fermentation broth of a recombinant Streptomyces roseosporus strain. Their chemical structures were determined by analyses of the biosynthetic pathway, chemical transformations, d,l-amino acid quantitation by enantiomer labeling, tandem LC-MS/MS, and 2D-NMR techniques. Compounds 2-4 exhibited potent antibacterial activity against Staphylococcus aureus with MIC values of 0.

View Article and Find Full Text PDF

Daptomycin, a cyclic lipopeptide produced by Streptomyces roseosporus, is the active ingredient of Cubicin (daptomycin-for-injection), a first-in-class antibiotic approved for treatment of skin and skin-structure infections caused by Gram-positive pathogens and bacteremia and endocarditis caused by Staphylococcus aureus, including methicillin-resistant strains. Genetic engineering of the nonribosomal peptide synthetase (NRPS) in the daptomycin biosynthetic pathway was exploited for the biosynthesis of novel active antibiotics. lambda-Red-mediated recombination was used to exchange single or multiple modules in the DptBC subunit of the NRPS to modify the daptomycin cyclic peptide core.

View Article and Find Full Text PDF