Fossil and archaeological evidence indicates that hominin dispersals into Southwest Asia occurred throughout the Pleistocene, including the expansion of Homo sapiens populations out of Africa. While there is evidence for hominin occupations in the Pleistocene in Iran, as evidenced by the presence of Lower to Upper Paleolithic archaeological sites, the extent to which humid periods facilitated population expansions into western Asia has remained unclear. To test the role of humid periods on hominin dispersals here we assess Paleolithic site distributions and paleoenvironmental records across Iran.
View Article and Find Full Text PDFCentral Asia is positioned at a crossroads linking several zones important to hominin dispersal during the Middle Pleistocene. However, the scarcity of stratified and dated archaeological material and paleoclimate records makes it difficult to understand dispersal and occupation dynamics during this time period, especially in arid zones. Here we compile and analyze paleoclimatic and archaeological data from Pleistocene Central Asia, including examination of a new layer-counted speleothem-based multiproxy record of hydrological changes in southern Uzbekistan at the end of MIS 11.
View Article and Find Full Text PDFPleistocene hominin dispersals out of, and back into, Africa necessarily involved traversing the diverse and often challenging environments of Southwest Asia. Archaeological and palaeontological records from the Levantine woodland zone document major biological and cultural shifts, such as alternating occupations by Homo sapiens and Neanderthals. However, Late Quaternary cultural, biological and environmental records from the vast arid zone that constitutes most of Southwest Asia remain scarce, limiting regional-scale insights into changes in hominin demography and behaviour.
View Article and Find Full Text PDFThe Arabian Peninsula is a critical geographic landmass situated between Africa and the rest of Eurasia. Climatic shifts across the Pleistocene periodically produced wetter conditions in Arabia, dramatically altering the spatial distribution of hominins both within and between continents. This is particularly true of Acheulean hominins, who appear to have been more tethered to water sources than Middle Palaeolithic hominins.
View Article and Find Full Text PDFBetween 10 and six thousand years ago the Arabian Peninsula saw the most recent of the 'Green Arabia' periods, when increased rainfall transformed this generally arid region. The transition to the Neolithic in Arabia occurred during this period of climatic amelioration. Various forms of stone structures are abundant in northern Arabia, and it has been speculated that some of these dated to the Neolithic, but there has been little research on their character and chronology.
View Article and Find Full Text PDFThe nature of human dispersals out of Africa has remained elusive because of the poor resolution of paleoecological data in direct association with remains of the earliest non-African people. Here, we report hominin and non-hominin mammalian tracks from an ancient lake deposit in the Arabian Peninsula, dated within the last interglacial. The findings, it is argued, likely represent the oldest securely dated evidence for in Arabia.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Recent interdisciplinary archaeological and paleoenvironmental research in the Arabian peninsula is transforming our understanding of ancient human societies in their ecological contexts. Hypotheses about the cultural and demographic impacts of a series of droughts have primarily been developed from the environmental and archaeological records of southeastern Arabia. Here we examine these human-environment interactions by integrating ongoing research from northern Arabia.
View Article and Find Full Text PDFThe Acheulean is the longest lasting cultural-technological tradition in human evolutionary history. However, considerable gaps remain in understanding the chronology and geographical distribution of Acheulean hominins. We present the first chronometrically dated Acheulean site from the Arabian Peninsula, a vast and poorly known region that forms more than half of Southwest Asia.
View Article and Find Full Text PDFDespite its largely hyper-arid and inhospitable climate today, the Arabian Peninsula is emerging as an important area for investigating Pleistocene hominin dispersals. Recently, a member of our own species was found in northern Arabia dating to ca. 90 ka, while stone tools and fossil finds have hinted at an earlier, middle Pleistocene, hominin presence.
View Article and Find Full Text PDFDespite occupying a central geographic position, investigations of hominin populations in the Arabian Peninsula during the Lower Palaeolithic period are rare. The colonization of Eurasia below 55 degrees latitude indicates the success of the genus Homo in the Early and Middle Pleistocene, but the extent to which these hominins were capable of innovative and novel behavioural adaptations to engage with mid-latitude environments is unclear. Here we describe new field investigations at the Saffaqah locality (206-76) near Dawadmi, in central Arabia that aim to establish how hominins adapted to this region.
View Article and Find Full Text PDFUnderstanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model.
View Article and Find Full Text PDFCurrent fossil, genetic, and archeological data indicate that Homo sapiens originated in Africa in the late Middle Pleistocene. By the end of the Late Pleistocene, our species was distributed across every continent except Antarctica, setting the foundations for the subsequent demographic and cultural changes of the Holocene. The intervening processes remain intensely debated and a key theme in hominin evolutionary studies.
View Article and Find Full Text PDFThe Arabian Peninsula is a key region for understanding climate change and human occupation history in a marginal environment. The Mundafan palaeolake is situated in southern Saudi Arabia, in the Rub' al-Khali (the 'Empty Quarter'), the world's largest sand desert. Here we report the first discoveries of Middle Palaeolithic and Neolithic archaeological sites in association with the palaeolake.
View Article and Find Full Text PDFPre-Pottery Neolithic assemblages are best known from the fertile areas of the Mediterranean Levant. The archaeological site of Jebel Qattar 101 (JQ-101), at Jubbah in the southern part of the Nefud Desert of northern Saudi Arabia, contains a large collection of stone tools, adjacent to an Early Holocene palaeolake. The stone tool assemblage contains lithic types, including El-Khiam and Helwan projectile points, which are similar to those recorded in Pre-Pottery Neolithic A and Pre-Pottery Neolithic B assemblages in the Fertile Crescent.
View Article and Find Full Text PDFThe Arabian Peninsula is a key region for understanding hominin dispersals and the effect of climate change on prehistoric demography, although little information on these topics is presently available owing to the poor preservation of archaeological sites in this desert environment. Here, we describe the discovery of three stratified and buried archaeological sites in the Nefud Desert, which includes the oldest dated occupation for the region. The stone tool assemblages are identified as a Middle Palaeolithic industry that includes Levallois manufacturing methods and the production of tools on flakes.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2008
Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years.
View Article and Find Full Text PDF