Publications by authors named "Paul Brear"

Fatty acids are a primary source of carbon for Pseudomonas aeruginosa (PA) in the airways of people with cystic fibrosis (CF). Here, we use tandem mass-tag proteomics to analyse the protein expression profile of a CF clinical isolate grown on different fatty acids. Two fatty acyl-CoA dehydrogenases (designated FadE1 and FadE2) are strongly induced during growth on fatty acids.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen, commonly associated with human airway infections. Based on its amino acid sequence similarity with Pyrococcus furiosusprotease I, P. aeruginosa PfpI was originally annotated as an intracellular protease.

View Article and Find Full Text PDF

The 2-methylcitrate cycle (2-MCC) and the glyoxylate cycle are central metabolic pathways in Pseudomonas aeruginosa, enabling the organism to utilize organic acids such as propionate and acetate during infection. Here, we show that these cycles are linked through enzymatic redundancy, with isocitrate lyase (AceA) exhibiting secondary 2-methylisocitrate lyase (2-MICL) activity. Furthermore, we use a combination of structural analyses, enzyme kinetics, metabolomics, and targeted mutation of PrpB to demonstrate that whereas loss of PrpB function impairs growth on propionate, the promiscuous 2-MICL activity of AceA compensates for this by mitigating the accumulation of toxic 2-MCC intermediates.

View Article and Find Full Text PDF

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibodies are vital in fighting viral infections and are key players in managing pandemics, sourced from antibody-secreting cells (ASCs) like plasma cells.
  • Current methods to identify these antibodies are often slow, costly, or technically complex, limiting their widespread use.
  • This new technology streamlines the process by using microfluidics and flow cytometry to rapidly discover high-affinity monoclonal antibodies from millions of ASCs in just two weeks, achieving a success rate of over 85%.
View Article and Find Full Text PDF

To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe ion a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria.

View Article and Find Full Text PDF

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2) is a metalloprotease that cleaves angiotensin II, a peptide substrate involved in the regulation of hypertension. Here, we identified a series of constrained bicyclic peptides, , inhibitors of human ACE2 by panning highly diverse bacteriophage display libraries. These were used to generate X-ray crystal structures which were used to inform the design of additional with increased affinity and inhibition of ACE2 enzymatic activity.

View Article and Find Full Text PDF
Article Synopsis
  • - COVID-19 has led to the swift creation of new antiviral treatments, including a novel approach using "Bicycles," which are specially structured peptides that target SARS-CoV-2.
  • - By screening bacteriophage libraries, researchers identified specific Bicycle binders that were enhanced from micromolar to nanomolar efficacy through a process called multimerization.
  • - Testing in mouse models showed that these multimerized and biparatopic Bicycles effectively reduce viral load and inflammation, highlighting their potential as a new antiviral strategy against evolving viruses like SARS-CoV-2.
View Article and Find Full Text PDF

In the opportunistic human pathogen (), arbon atabolite epression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the atabolite epression ontrol protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq.

View Article and Find Full Text PDF

Tailoring of the activity and specificity of proteases is critical for their utility across industrial, medical and research purposes. However, engineering or evolving protease catalysts is challenging and often labour intensive. Here, we describe a generic method to accelerate this process based on yeast display.

View Article and Find Full Text PDF

The liver isoform of pyruvate kinase (PKL) has gained interest due to its potential capacity to regulate fatty acid synthesis involved in the progression of non-alcoholic fatty liver disease (NAFLD). Here we describe a novel series of PKL modulators that can either activate or inhibit the enzyme allosterically, from a cryptic site at the interface of two protomers in the tetrameric enzyme. Starting from urolithin D, we designed and synthesised 42 new compounds.

View Article and Find Full Text PDF

CK2 is a ubiquitous protein kinase with an anti-apoptotic role and is found to be overexpressed in multiple cancer types. To this end, the inhibition of CK2 is of great interest with regard to the development of novel anti-cancer therapeutics. ATP-site inhibition of CK2 is possible; however, this typically results in poor selectivity due to the highly conserved nature of the catalytic site amongst kinases.

View Article and Find Full Text PDF

The human pathogen Pseudomonas aeruginosa (Pa) is one of the most frequent and severe causes of nosocomial infection. This organism is also a major cause of airway infections in people with cystic fibrosis (CF). Pa is known to have a remarkable metabolic plasticity, allowing it to thrive under diverse environmental conditions and ecological niches; yet, little is known about the central metabolic pathways that sustain its growth during infection or precisely how these pathways operate.

View Article and Find Full Text PDF

The small molecule belumosudil was initially identified as a selective inhibitor of Rho-associated coiled-coil kinase 2 (ROCK2) and has recently been approved for the treatment of graft-versus-host disease. However, recent studies have shown that many of the phenotypes displayed upon treatment with belumosudil were due to CK2α inhibition. CK2α is in itself a very promising therapeutic target for a range of conditions and has recently been put forward as a potential treatment for COVID-19.

View Article and Find Full Text PDF

The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for β-glucuronidase activity. We identified SN243, a genuine β-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member.

View Article and Find Full Text PDF

In this work, an iterative cycle of enzymatic assays, X-ray crystallography, molecular modelling and cellular assays were used to develop a functionalisable chemical probe for the CK2α/β PPI. The lead peptide, P8C9, successfully binds to CK2α at the PPI site, is easily synthesisable and functionalisable, highly stable in serum and small enough to accommodate further optimisation.

View Article and Find Full Text PDF

Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP production during liver cell glycolysis and is considered a potential drug target for the treatment of non-alcoholic fatty liver disease (NAFLD). In this study, we report the first ADP-competitive PKL inhibitors and identify several starting points for the further optimization of these inhibitors. Modeling and structural biology guided the optimization of a PKL-specific anthraquinone-based compound.

View Article and Find Full Text PDF

(PA) depends on the Entner-Doudoroff pathway (EDP) for glycolysis. The main enzymatic regulator in the lower half of the EDP is pyruvate kinase. PA contains genes that encode two isoforms of pyruvate kinase, denoted PykA and PykF.

View Article and Find Full Text PDF

Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge.

View Article and Find Full Text PDF

CK2 is a protein kinase that plays important roles in many physio-pathological cellular processes. As such, the development of chemical probes for CK2 has received increasing attention in the past decade with more than 40 lead compounds developed. In this review, we aim to provide the reader with a comprehensive overview of the chemical probes acting outside the highly-conserved ATP-site developed to date.

View Article and Find Full Text PDF

Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method.

View Article and Find Full Text PDF

For several centuries, microorganisms and enzymes have been used for many different applications. Although many enzymes with industrial applications have already been reported, different screening technologies, methods and approaches are constantly being developed in order to allow the identification of enzymes with even more interesting applications. In our work, we have performed data mining on the sp.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongsmfb2al9iamd0f1a5n49pmuca9ava0d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once