Publications by authors named "Paul Bourbon"

Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution.

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging of the myelin sheath is a powerful tool to investigate multiple sclerosis, monitor its evolution, and support drug development. Radiotracers based on -dimethylaminostilbene (MeDAS) fluorinated analogs have been designed for myelin PET imaging but were never translated to humans. We have synthesized three original fluorinated analogs of MeDAS with low metabolic rates for which binding to myelin in a healthy rat brain was demonstrated by fluorescence microscopy.

View Article and Find Full Text PDF

Under superacidic conditions, aniline and indole derivatives are sulfonylated at low temperature with easy-to-access arenesulfonic acids or arenesulfonyl hydrazides. By modification of the functional-group directing effect through protonation, this method allows nonclassical site functionalization by overcoming the innate regioselectivity of electrophilic aromatic substitution. This superacid-mediated sulfonylation of arenes is complementary to existing methods and can be applied, through protection by protonation, to the late-stage site-selective functionalization of natural alkaloids and active pharmaceutical ingredients.

View Article and Find Full Text PDF