Publications by authors named "Paul Bethel"

The RAS/MAPK pathway is a major driver of oncogenesis and is dysregulated in approximately 30% of human cancers, primarily by mutations in the BRAF or RAS genes. The extracellular-signal-regulated kinases (ERK1 and ERK2) serve as central nodes within this pathway. The feasibility of targeting the RAS/MAPK pathway has been demonstrated by the clinical responses observed through the use of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma; however, resistance frequently develops.

View Article and Find Full Text PDF

Anhydrouridines react with aliphatic amines to give N-alkyl isocytosines, but reported procedures often demand very long reaction times and can be low yielding, with narrow scope. A modified procedure for such reactions has been developed, using microwave irradiation, significantly reducing reaction time and allowing facile access to a diverse range of novel nucleosides on the gram scale. The method has been used to prepare a precursor to a novel analogue of lysidine, a naturally occurring iminonucleoside found in RNA.

View Article and Find Full Text PDF

There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years. Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression. In most cases, this resistance is in the form of the T790M mutation.

View Article and Find Full Text PDF

A novel method for the synthesis of a wide range of 1,5-disubstituted 1,2-dihydro-1,2,4-triazol-3-ones is described. The key step involves a reaction between a dilithiated BOC-hydrazine and a N-alkoxycarbonylcarboximidothioate. A broad range of aryl and alkyl functional groups are tolerated, providing a versatile route for the synthesis of triazolones.

View Article and Find Full Text PDF

A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR.

View Article and Find Full Text PDF

A novel, potent and selective quinazolinone series of inhibitors of p38α MAP kinase has been identified. Modifications designed to address the issues of poor aqueous solubility and high plasma protein binding as well as embedded aniline functionalities resulted in the identification of a clinical candidate N-cyclopropyl-4-methyl-3-[6-(4-methylpiperazin-1-yl)-4-oxoquinazolin-3(4H)-yl]benzamide (AZD6703). Optimisation was guided by understanding of the binding modes from X-ray crystallographic studies which showed a switch from DFG 'out' to DFG 'in' as the inhibitor size was reduced to improve overall properties.

View Article and Find Full Text PDF

A number of molecular recognition features have been exploited in structure-based design of selective Cathepsin inhibitors.

View Article and Find Full Text PDF

A series of potent Cathepsin L inhibitors with good selectivity with respect to other cysteine Cathepsins is described and SAR is discussed with reference to the crystal structure of a protein-ligand complex.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Paul Bethel"

  • - Paul Bethel's research primarily focuses on the development of selective inhibitors targeting key components of cancer-related signaling pathways, particularly those involved in the RAS/MAPK and EGFR pathways, to address resistance mechanisms in non-small cell lung cancer (NSCLC).
  • - His recent findings highlight the discovery of potent inhibitors for ERK1/2 and EGFR mutations, demonstrating improved efficacy in monotherapy and combination treatments, as well as advancements in synthetic methodologies for novel nucleosides and small molecules.
  • - Bethel's work emphasizes structure-guided drug design and innovative synthesis techniques, contributing to both basic and applied medicinal chemistry with potential implications for treating various cancers and inflammatory diseases.