Publications by authors named "Paul Bernhardt"

The metal-to-metal charge transfer (MMCT) transitions of a series of Class II mixed valence dinuclear complexes bearing cyano bridging ligands may be varied systematically by variations to either the hexacyanometallate(II) donor or Co(III) acceptor moieties. Specifically, the new dinuclear species trans-[L(14S)CoNCFe(CN)(5)](-)(L(14S)= 6-methyl-1,11-diaza-4,8-dithia-cyclotetradecane-6-amine) and trans-[L(14)CoNCRu(CN)(5)](-)(L(14)= 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine) have been prepared and their spectroscopic and electrochemical properties are compared with the relative trans-[L(14)CoNCFe(CN)(5)](-). The crystal structures of Na(trans-[L(14S)CoNCFe(CN)(5)]).

View Article and Find Full Text PDF

Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (FeIII-FeII --> FeII-FeIII) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Uf(o)) have been determined. The effect of pH on the redox potentials has been investigated in the range 3 < pH < 6.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the synthesis of Copper(II) bromide and chloride complexes using a new heptadentate ligand called 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L).
  • The bromide complexes form chiral, wedge-shaped structures with a C2 symmetry, while chloride complexes lead to asymmetrical structures with different coordination centers.
  • The research also explores how the complexes behave in solution and discusses their redox chemistry, highlighting the influence of bromide versus chloride ions on the structures.
View Article and Find Full Text PDF

The syntheses and characterization of two new redox active cyclam ligands ferrocenylmethyl-(6-methyl-1,4,8,11-tetraazacyclotetradec-6-yl)-amine (L3) and 1,1'-ferrocenylmethyl-bis(6-methyl-1,4,8,11-tetraazacyclotetradec-6-yl)-amine (L4) are reported. The compounds each possess a ferrocenyl group bearing one (L3) or two (L4) appended macrocycles linked by their exocyclic amino groups and the crystal structures of both compounds have been determined. Anion binding of L3 and L4 was investigated by electrochemical titrations where H-bonding to each macrocycle causing a shift in the Fc+/0 redox potential was used as a reporter of guest binding.

View Article and Find Full Text PDF

Background: Congenic strains of mice are assumed to differ only at a single gene or region of the genome. These mice have great importance in evaluating the function of genes. However, their utility depends on the maintenance of this true congenic nature.

View Article and Find Full Text PDF

Tetrazolo[1,5-a]pyridines/2-azidopyridines 1 undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes 3, which react with alcohols to afford 2-alkoxy-1H-1,3-diazepines 4 (5), with secondary amines to 2-dialkylamino-5H-1,3-diazepines 16, sometimes via isolable 2-dialkylamino-1H-1,3-diazepines 15, and with water to 1,3-diazepin-2-ones 19. The latter are also obtained by elimination of isobutene or propene from 2-tert-butoxy- or 2-isopropoxy-1H-1,3-diazepines 4 or 5. 1,3-Diazepin-2-one 22B and 1,3-diazepin-4-one 24 were obtained from hydrolysis of the corresponding 4-chlorodiazepines.

View Article and Find Full Text PDF

In dimethylsulfoxide reductase of Rhodobacter capsulatus tryptophan-116 forms a hydrogen bond with a single oxo ligand bound to the molybdenum ion. Mutation of this residue to phenylalanine affected the UV/visible spectrum of the purified Mo(VI) form of dimethylsulfoxide reductase resulting in the loss of the characteristic transition at 720 nm. Results of steady-state kinetic analysis and electrochemical studies suggest that tryptophan 116 plays a critical role in stabilizing the hexacoordinate monooxo Mo(VI) form of the enzyme and prevents the formation of a dioxo pentacoordinate Mo(VI) species, generated as a consequence of the dissociation of one of the dithiolene ligands of the molybdopterin cofactor from the Mo ion.

View Article and Find Full Text PDF

Certain 3-azabicyclo[3.3.1]nonane derivatives undergo unprecedented stereospecific skeletal cleavage when subjected to light affording a novel heterotricyclic skeleton.

View Article and Find Full Text PDF

Reaction between ethane-1,2-diamine and 3,3'-dichloropivalic acid results in different, isomeric tetra-amine derivatives, one a tetraamino carboxylic acid and the other a carboxamidotriamino alcohol, depending upon reaction conditions. Intended conversion of the Cu(II) complex of the former to a cyclam-like macrocycle through reaction with nitroethane and formaldehyde results in isolation of derivatives of both the former and the latter. This can be rationalized by assuming the intermediacy of an azetidinone, a species similar to that seen in simpler reactions of dichloropivalates.

View Article and Find Full Text PDF

Several tetrazolo[1,5-a]pyridines/2-azidopyridines undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes, as well as ring cleavage to cyanovinylketenimines, in low temperature Ar matrices. 6,8-Dichlorotetrazolo[1,5-a]pyridine/2-azido-3,5-dichloropridine undergoes ready exchange of the chlorine in position 8 (3) with ROH/RONa. 8-Chloro-6-trifluoromethyltetrazolo[1,5-a]pyridine undergoes solvolysis of the CF(3) group to afford 8-chloro-6-methoxycarbonyltetrazolo[1,5-a]pyridine.

View Article and Find Full Text PDF

The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopentaaminecobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C(11)H(27)N(5))](ClO(4))(2).H(2)O and [Co(OH)(C(11)H(27)N(5))](ClO(4))(2), exhibit similar conformations, significant differences in the Co-N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo).

View Article and Find Full Text PDF

Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs.

View Article and Find Full Text PDF

Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulfidophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups.

View Article and Find Full Text PDF

The X-ray crystal structures are reported of four novel and potentially O,N,S-tridentate donor ligands that demonstrate antitumour activity. These ligands are 1-[(4-methylthiosemicarbazono)methyl]-2-naphthol, C(13)H(13)N(3)OS, (III), 1-[(4-ethylthiosemicarbazono)methyl]-2-naphthol, C(14)H(15)N(3)OS, (IV), 1-[(4-phenylthiosemicarbazono)methyl]-2-naphthol, C(18)H(15)N(3)OS, (V), and 1-[(4,4-dimethylthiosemicarbazono)methyl]-2-naphthol dimethyl sulfoxide solvate, C(14)H(15)N(3)OS.C(2)H(6)OS, (VI).

View Article and Find Full Text PDF

The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, [CoCl(C(11)H(27)N(5))][ZnCl(4)], are reported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.

View Article and Find Full Text PDF

Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate ( N, N, O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of theHPKIH analogues is maintained even after complexation with Fe.

View Article and Find Full Text PDF

Flash vacuum thermolysis (FVT) of 1-(dimethylamino)pyrrole-2,3-diones 5 causes extrusion of CO with formation of transient hydrazonoketenes 7. The transient ketenes 7 are observable in the form of weak bands at 2130 (7a) or 2115 cm-1 (7b) in the Ar matrix IR spectra resulting from either FVT or photolysis of either 5 or 1,1-dimethylpyrazolium-5-oxides 8, and these absorptions are in excellent agreement with B3LYP/6-31G* frequency calculations. Under FVT conditions the ketenes 7 cyclize to pyrazolium oxides 8, which undergo 1,4-migration of a methyl group to yield 1,4-dimethyl-3-phenylpyrazole-5(4H)-one 9a and 1,4,4-trimethyl-3- phenylpyrazole-5(4H)-one 9b.

View Article and Find Full Text PDF

Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.

View Article and Find Full Text PDF

A novel series of triazine-appended macrocyclic complexes has been investigated as potential hydrogen bonding receptors for complementarily disposed heterocycles. Cocrystallization of a melamine-appended azacyclam complex of Cu(II) has been achieved with barbitone, the barbiturate anion and thymine. In each case, a complementary DAD/ADA hydrogen bonding motif between the melamine group and the heterocycle has been identified by X-ray crystallography.

View Article and Find Full Text PDF

Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit.

View Article and Find Full Text PDF

A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K(m) toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K(m) was lower for both substrates in the mutant enzyme.

View Article and Find Full Text PDF

The spectral and geometric trends of Ln(trensal) complexes (H(3)trensal = 2,2',2' '-tris(salicylideneimino)triethylamine) along the lanthanide series are analyzed. Low-temperature polarized absorption and luminescence spectra are reported for nine of the complexes with transitions suitable for analysis. Both the angular and radial geometry variations as a function of the lanthanide ion are quantified.

View Article and Find Full Text PDF

The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo(VI/V) response at +161 mV followed by a reversible Mo(V/IV) response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo(V) state and we have determined the p K(a) for this semi-reduced species to be 9.

View Article and Find Full Text PDF

Efficient intramolecular electronic energy transfer (EET) has been demonstrated for three novel bichromophoric compounds utilizing a macrocyclic spacer as the bridge between the electronic energy donor and acceptor fragments. As their free base forms, emission from the electronically excited donor is absent and the acceptor emission is reductively quenched via photoinduced oxidation of proximate amine lone pairs. As their Zn(II) complexes, excitation of the donor results in sensitization of the electronic acceptor emission.

View Article and Find Full Text PDF

A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co(III) complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported.

View Article and Find Full Text PDF