Publications by authors named "Paul Belcher"

The number of peer-reviewed publications that feature biosensor data increases every year. A search of PubMed using common technique terminology, including bio-layer interferometry (BLI), surface plasmon resonance (SPR) and grating-coupled interferometry (GCI) generated more than 2500 scientific papers from 2022. Compared to 2009, when David Myszka and Rebecca Rich presented their most recent review of biosensor literature (Rich and Myszka, 2011), this number has nearly doubled.

View Article and Find Full Text PDF

Noroviruses are the most common cause of acute gastroenteritis in the developed world. Noroviruses are a diverse group of nonenveloped RNA viruses that are continuously evolving. This leads to the rise of immunologically distinct strains of the same genotype on a frequent basis.

View Article and Find Full Text PDF

The first 23-step total synthesis of the cyclodepsipeptide dolastatin 16 (1) has been achieved. Synthesis of the dolaphenvaline and dolamethylleuine amino acid units using simplified methods improved the overall efficiency. The formation of the 25-membered macrocycle employing lactonization with 2-methyl-6-nitrobenzoic anhydride completed a key step in the synthesis.

View Article and Find Full Text PDF

The free movement of European citizens to live and work within the European Union (EU) is one of the fundamental pillars of the European single market. Recent EU legislation on the recognition of professional qualifications (to take effect January 2016) updates the framework within which doctors and others can migrate freely between EU member states to practise their profession. UK organisations lobbied extensively to change aspects of the original proposals, in particular those that threatened to 'water down' public protection in the interest of free movement.

View Article and Find Full Text PDF

Many governments in Europe, either of their own volition or at the behest of the international financial institutions, have adopted stringent austerity policies in response to the financial crisis. By contrast, the USA launched a financial stimulus. The results of these experiments are now clear: the American economy is growing and those European countries adopting austerity, including the UK, Ireland, Greece, Portugal and Spain, are stagnating and struggling to repay rising debts.

View Article and Find Full Text PDF

One approach to prepare protein binding ligands is to join two low-affinity ligands that bind different sites on the target protein to create a high-affinity bivalent ligand. This typically requires some knowledge of the ligand binding site and requires exquisite orientation of the ligands in order to achieve maximum binding affinity. Here, we explored the limit of affinity improvement possible with no a priori knowledge of peptide binding site and with minimal effort spent in linking the lead peptides.

View Article and Find Full Text PDF

Three advances necessary to bring dolastatin 16 (1) into full-scale preclinical development as an anticancer drug have been accomplished. The X-ray crystal structure of dolastatin 16 has been solved, which allowed stereoselective syntheses of its two new amino acid units, dolamethylleuine (Dml) and dolaphenvaline (Dpv), to be completed. The X-ray crystal structures of synthetic Z-Dml and TFA-Dpv have also been completed.

View Article and Find Full Text PDF

Background: There is a significant need for affinity reagents with high target affinity/specificity that can be developed rapidly and inexpensively. Existing affinity reagent development approaches, including protein mutagenesis, directed evolution, and fragment-based design utilize large libraries and/or require structural information thereby adding time and expense. Until now, no systematic approach to affinity reagent development existed that could produce nanomolar affinity from small chemically synthesized peptide libraries without the aid of structural information.

View Article and Find Full Text PDF

Background: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins.

View Article and Find Full Text PDF

We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background.

View Article and Find Full Text PDF

A full understanding of the proteome will require ligands to all of the proteins encoded by genomes. While antibodies represent the principle affinity reagents used to bind proteins, their limitations have created a need for new ligands to large numbers of proteins. Here we propose a general concept to obtain protein affinity reagents that avoids animal immunization and iterative selection steps.

View Article and Find Full Text PDF

European Commission proposals provide legal clarity and more information for patients

View Article and Find Full Text PDF