Background: Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K.
View Article and Find Full Text PDFPurpose: Factor H (FH, encoded by CFH) prevents activation of the complement system's alternative pathway (AP) on host tissues. FH impedes C3 convertase (C3bBb) formation, accelerates C3bBb decay, and is a cofactor for factor I (FI)-catalyzed C3b cleavage. Numerous CFH variants are associated with age-related macular degeneration (AMD), but their functional consequences frequently remain undetermined.
View Article and Find Full Text PDFMany proteins recognise other proteins mechanisms that involve the folding of intrinsically disordered regions upon complex formation. Here we investigate how the selectivity of a drug-like small molecule arises from its modulation of a protein disorder-to-order transition. Binding of the compound AM-7209 has been reported to confer order upon an intrinsically disordered 'lid' region of the oncoprotein MDM2.
View Article and Find Full Text PDFGroundwater/surface-water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g.
View Article and Find Full Text PDFPurpose: GEM103 is a recombinantly produced full-length version of the human complement factor H (CFH) under clinical investigation for treatment of age-related macular degeneration (AMD) in individuals carrying an AMD risk-associated genetic variant of . This study aimed to investigate the complement pathway-related functions of GEM103 in comparison with those of native human CFH.
Methods: Key biological activities of GEM103 and human serum-derived CFH (sdCFH) were compared using four independent functional assays.
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed.
View Article and Find Full Text PDFMembranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), atypical haemolytic uraemic syndrome (aHUS) and age-related macular degeneration (AMD) have all been strongly linked with dysfunction of the alternative pathway (AP) of complement. A significant proportion of individuals with MPGN, C3G, aHUS and AMD carry rare genetic variants in the gene that cause functional or quantitative deficiencies in the factor H (FH) protein, an important regulator of the AP. analysis of the deleteriousness of rare genetic variants in is not reliable and careful biochemical assessment remains the gold standard.
View Article and Find Full Text PDFMacrophages are a major immune cell type in the tumor microenvironment, where they display a tumor-supporting phenotype. Factor H (FH) is a complement inhibitor that also plays a role in several cellular functions. To date, the phenotype of monocytes stimulated with FH has been unexplored.
View Article and Find Full Text PDFProteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these 'excited' conformational states.
View Article and Find Full Text PDFActivation and suppression of the complement system compete on every serum-exposed surface, host or foreign. Potentially harmful outcomes of this competition depend on surface molecules through mechanisms that remain incompletely understood. Combining surface plasmon resonance (SPR) with atomic force microscopy (AFM), here we studied two complement system proteins at the single-molecule level: C3b, the proteolytically activated form of C3, and factor H (FH), the surface-sensing C3b-binding complement regulator.
View Article and Find Full Text PDFAn effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion.
View Article and Find Full Text PDFCyclophilins (Cyps) are a major family of drug targets that are challenging to prosecute with small molecules because the shallow nature and high degree of conservation of the active site across human isoforms offers limited opportunities for potent and selective inhibition. Herein a computational approach based on molecular dynamics simulations and free energy calculations was combined with biophysical assays and X-ray crystallography to explore a flip in the binding mode of a reported urea-based Cyp inhibitor. This approach enabled access to a distal pocket that is poorly conserved among key Cyp isoforms, and led to the discovery of a new family of sub-micromolar cell-active inhibitors that offer unprecedented opportunities for the development of next-generation drug therapies based on Cyp inhibition.
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome (aHUS) is frequently associated in humans with loss-of-function mutations in complement-regulating proteins or gain-of-function mutations in complement-activating proteins. Thus, aHUS provides an archetypal complement-mediated disease with which to model new therapeutic strategies and treatments. Herein, we show that, when transferred to mice, an aHUS-associated gain-of-function change (D1115N) to the complement-activation protein C3 results in aHUS.
View Article and Find Full Text PDFIn a new paper, the protein InvD from , a zoonotic pathogen, is shown to assist late-stage invasion of intestinal epithelia. Remarkably, InvD acts by binding the Fab region of IgG or IgA. It straddles adjacent light-chain and heavy-chain variable domains, but its binding is different from that of antigens in that complementarity-determining regions do not participate.
View Article and Find Full Text PDFC3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH), that was effective in experimental C3G.
View Article and Find Full Text PDFThe term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water-budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head-dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three-dimensional, volumetric portion of a groundwater flow field that discharges to a well.
View Article and Find Full Text PDFSpontaneous activation enables the complement system to respond very rapidly to diverse threats. This activation is efficiently suppressed by complement factor H (CFH) on self-surfaces but not on foreign surfaces. The surface selectivity of CFH, a soluble protein containing 20 complement-control protein modules (CCPs 1-20), may be compromised by disease-linked mutations.
View Article and Find Full Text PDFGroundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping-showing the model-calculated potential impacts that wells have on stream baseflow-can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow.
View Article and Find Full Text PDFThe slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS).
View Article and Find Full Text PDFThe human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation.
View Article and Find Full Text PDFThe serum proteins factor H (FH), consisting of 20 complement control protein modules (CCPs), and its splice product FH-like protein 1 (FHL-1; consisting of CCPs 1-7) are major regulators of the alternative pathway (AP) of complement activation. The engineered version of FH, miniFH, contains only the N- and C-terminal portions of FH linked by an optimized peptide and shows ∼ 10-fold higher ex vivo potency. We explored the hypothesis that regulatory potency is enhanced by unmasking of a ligand-binding site in the C-terminal CCPs 19-20 that is cryptic in full-length native FH.
View Article and Find Full Text PDFComplement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a β-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis.
View Article and Find Full Text PDF