Publications by authors named "Paul Balister"

We study tree structures termed optimal channel networks (OCNs) that minimize the total gravitational energy loss in the system, an exact property of steady-state landscape configurations that prove dynamically accessible and strikingly similar to natural forms. Here, we show that every OCN is a so-called natural river tree, in the sense that there exists a height function such that the flow directions are always directed along steepest descent. We also study the natural river trees in an arbitrary graph in terms of forbidden substructures, which we call k-path obstacles, and OCNs on a d-dimensional lattice, improving earlier results by determining the minimum energy up to a constant factor for every [Formula: see text] Results extend our capabilities in environmental statistical mechanics.

View Article and Find Full Text PDF

We model the dynamical behavior of the neuropil, the densely interconnected neural tissue in the cortex, using neuropercolation approach. Neuropercolation generalizes phase transitions modeled by percolation theory of random graphs, motivated by properties of neurons and neural populations. The generalization includes (1) a noisy component in the percolation rule, (2) a novel depression function in addition to the usual arousal function, (3) non-local interactions among nodes arranged on a multi-dimensional lattice.

View Article and Find Full Text PDF