The successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N)-functionalized poly(3,4-ethylenedioxythiophene) () films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure or pure , and last, were formed by co-polymerizing a 1:4 mixture of N-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry.
View Article and Find Full Text PDFHere, the synthesis of a novel poly(pyrrole phenylene) (PpyP) that is both modular in ways of functionalization and soluble in organic solvents is reported, and therefore solution processable. This is achieved through the functionalization of the side-chain substituents in pyrrole phenylene (PyP) repeating units. Butyl acrylate brushes are first grafted through atom transfer radical polymerization from one type of PyP, followed by oxidative chemical co-polymerization of the grafted PyP with a PyP bearing different side chains-either an azide or a methoxy moiety, resulting in a soluble PpyP where solubility is not dopant-dependent.
View Article and Find Full Text PDFElectronic graft copolymers with conjugated polymer backbones are emerging as promising materials for various organic electronics. These materials combine the advantages of organic electronic materials, such as molecular tunability of opto-electronic and electrochemical properties, with solution processability and other 'designer' physical and mechanical properties imparted through the addition of grafted polymer side chains. Future development of such materials with complex molecular architecture requires a better understanding of the effect of molecular parameters, such as side chain length, on the structure and, in turn, on the electronic properties.
View Article and Find Full Text PDFThe field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa.
View Article and Find Full Text PDFThis research focuses on the design of biocompatible materials/scaffold suitable for use for tissue engineering. Porous fiber mats were produced through electrospinning of polythiophene phenylene (PThP) conducting polymers blended with poly(lactide- co-glycolic acid) (PLGA). A peptide containing an arginylglycylaspartic acid (RGD) fragment was synthesized using solid phase peptide synthesis and subsequently grafted onto a PThP polymer using azide-alkyne "click" chemistry.
View Article and Find Full Text PDFWe present a versatile and facile procedure for the immobilisation of bioprobe molecules to an electrochemical sensing element. We eliminate lengthy preparation procedures for direct functionalisation of electrode surfaces by pre-attaching probe molecules to carboxylic acid bearing termonomers of pyrrole phenylenes or thiophene phenylenes. We demonstrate that these conjugates can be electrodeposited at low potentials to form nano-scale porous, electroactive conducting polymer films, exposing the bioprobe and retaining activity and specificity for binding, exemplified here with DNA sensors.
View Article and Find Full Text PDF