Publications by authors named "Paul B Hatzinger"

Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA.

View Article and Find Full Text PDF

Numerous US drinking water aquifers have been contaminated with per- and polyfluoroalkyl substances (PFAS) from fire-fighting and fire-training activities using aqueous film-forming foam (AFFF). These sites often contain other organic compounds, such as fuel hydrocarbons and methane, which may serve as primary substrates for cometabolic (i.e.

View Article and Find Full Text PDF

2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS are stable synthetic compounds found in the environment, raising health and ecological concerns.
  • Traditional high-temperature incineration is effective for treating PFAS but requires significant resources, leading to interest in lower-temperature alternatives that may produce incomplete breakdown products.
  • This study reveals that heating the PFAS compound PFHxS with salts at lower temperatures generates novel volatile organofluorine products like perfluorohexyl chloride and bromide, highlighting potential complexities in PFAS treatment strategies.
View Article and Find Full Text PDF

Chlorinated volatile organic compound (cVOC) degradation rate constants are crucial information for site management. Conventional approaches generate rate estimates from the monitoring and modeling of cVOC concentrations. This requires time series data collected along the flow path of the plume.

View Article and Find Full Text PDF

Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized.

View Article and Find Full Text PDF

New energetic formulations containing insensitive high explosives (IHE), such as 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazole-5-one (NTO), and nitroguanidine (NQ) are being developed to provide safer munitions. The addition of IHE to munitions formulations results in complex wastewaters from explosives manufacturing, load and pour operations and demilitarization activities. New technologies are required to treat those wastewaters.

View Article and Find Full Text PDF

We report the draft genome sequences of NQ5, strain NQ4, and strain NQ7 isolated from a laboratory-scale membrane bioreactor, soils from San Antonio, TX, USA and sediments from Galveston Bay, TX, USA, respectively. These bacteria degrade the explosive compound nitroguanidine, which is present in some insensitive munitions.

View Article and Find Full Text PDF

Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH monooxygenases via a process known as cometabolism.

View Article and Find Full Text PDF

This study contrasts the use of high-resolution passive sampling and traditional groundwater monitoring wells (GWMW) to characterize a chlorinated solvent site and assess the effectiveness of a biowall (mulch, compost and sand) that was installed to remediate trichloroethene (TCE), the primary contaminant of concern. High-resolution passive profilers (HRPPs) were direct driven hydraulically upgradient, within, and hydraulically downgradient of the biowall and in close proximity to existing GWMWs. Compared with hydraulically upgradient locations, the biowall was highly reducing, there were higher densities of bacteria/genes capable of reductive dechlorination, and TCE was being reductively transformed, but not completely, as cis-1,2-dichloroethene (cis-DCE) was detected within and hydraulically downgradient of the biowall.

View Article and Find Full Text PDF

Compound-specific isotope analysis (CSIA), position-specific isotope analysis (PSIA), and computational modeling (e.g., quantum mechanical models; reactive-transport models) are increasingly being used to monitor and predict biotic and abiotic transformations of organic contaminants in the field.

View Article and Find Full Text PDF

In surface water environments, photodegradation may be an important process for the natural attenuation of 2,4-dinitroanisole (DNAN). Understanding the photolysis and photocatalysis mechanisms of DNAN is difficult because the photosensitivity of nitro groups and the behavior of DNAN as a potential photosensitizer are unclear in aqueous solutions. Here, we investigate the degradation mechanisms of DNAN under UV-A (λ ~ 350 nm) and UV-C (λ ~ 254 nm) irradiation in a photolysis reactor where aqueous solution was continuously recycled through a UV-irradiated volume from a non-irradiated external reservoir.

View Article and Find Full Text PDF

Natural chlorate (ClO) is widely distributed in terrestrial and extraterrestrial environments. To improve understanding of the origins and distribution of ClO, we developed and tested methods to determine the multi-dimensional isotopic compositions (δO, ΔO, δCl, Cl/Cl) of ClO and then applied the methods to samples of natural nitrate-rich caliche-type salt deposits in the Atacama Desert, Chile, and Death Valley, USA. Tests with reagents and artificial mixed samples indicate stable-isotope ratios were minimally affected by the purification processes.

View Article and Find Full Text PDF

We present the first report of biotransformation of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN), replacements for the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT), respectively, by methane-oxidizing cultures under aerobic conditions. Two consortia, dominated by Methylosinus spp., degraded both compounds with transient production of reduced NTO products, and non-stoichiometric production of reduced DNAN products.

View Article and Find Full Text PDF

At groundwater sites contaminated with chlorinated ethenes, fermentable substrates are often added to promote reductive dehalogenation by indigenous or augmented microorganisms. Contemporary bioremediation performance monitoring relies on nucleic acid biomarkers of key organohalide-respiring bacteria, such as (). Metagenome sequencing of the commercial, -containing consortium, SDC-9, identified 12 reductive dehalogenase (RDase) genes, including (two copies), , and , and allowed for specific detection and quantification of RDase peptides using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

N-Nitrosodimethylamine (NDMA) is found in groundwater and drinking water from industrial, agricultural, water treatment, and military/aerospace sources, and it must often be treated to part-per-trillion (ng/L) concentrations. The most effective remedial technology for NDMA in groundwater is pump-and-treat with ultraviolet irradiation (UV), but this approach is expensive because it requires ex situ infrastructure and high energy input. The objective of this project was to evaluate an in situ biological treatment approach for NDMA.

View Article and Find Full Text PDF

While bioremediation technologies for trichloroethene (TCE), a suspected carcinogen, have been successfully demonstrated in neutral pH aquifers, these technologies are often ineffective for remediating TCE contamination in acidic aquifers (i.e., pH < 5.

View Article and Find Full Text PDF

The fate and transport of groundwater contaminants depends partially on groundwater velocity, which can vary appreciably in highly stratified aquifers. A high-resolution passive profiler (HRPP) was developed to evaluate groundwater velocity, contaminant concentrations, and microbial community structure at ∼20 cm vertical depth resolution in shallow heterogeneous aquifers. The objective of this study was to use mass transfer of bromide (Br ), a conservative tracer released from cells in the HRPP, to estimate interstitial velocity.

View Article and Find Full Text PDF

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and perchlorate (ClO) are common, and often co-mingled, contaminants at military ranges worldwide. This project investigated the feasibility of using a passive emulsified oil biobarrier plus a slow release pH buffering reagent to remediate RDX, HMX, and ClO in a low pH aquifer at an active range. A 33 m biobarrier was emplaced perpendicular to the contaminant plumes, and dissolved explosives, perchlorate, and other relevant parameters were monitored.

View Article and Find Full Text PDF

Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism.

View Article and Find Full Text PDF

1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was historically added to leaded gasoline as a scavenger to prevent the build-up of lead oxide deposits in engines. Studies indicate that EDB is present at thousands of past fuel spill sites above its stringent EPA Maximum Contaminant Level (MCL) of 0.05 μg/L.

View Article and Find Full Text PDF

1,2-Dibromethane (EDB) is a toxic fuel additive that likely occurs at many sites where leaded fuels have impacted groundwater. This study quantified carbon (C) isotope fractionation of EDB associated with anaerobic and aerobic biodegradation, abiotic degradation by iron sulfides, and abiotic hydrolysis. These processes likely contribute to EDB degradation in source zones (biodegradation) and in more dilute plumes (hydrolysis).

View Article and Find Full Text PDF

The remediation of chlorinated solvent contaminated sites frequently involves bioaugmentation with mixed cultures containing Dehalococcoides mccartyi. Their activity is then examined by quantifying reductive dehalogenase (RDase) genes. Recently, we described a rapid, low cost approach, based on loop mediated isothermal amplification (LAMP), which allowed for the visual detection of RDase genes from groundwater.

View Article and Find Full Text PDF

The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D.

View Article and Find Full Text PDF

The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations.

View Article and Find Full Text PDF