Detecting defects in plates is crucial across various industries due to safety risks. While ultrasonic bulk waves offer point-by-point inspections, they are time-consuming and limited in coverage. In contrast, guided waves enable the rapid inspection of larger areas.
View Article and Find Full Text PDFBackground: Cardiovascular diseases (CVDs), being the culprit for one-third of deaths globally, constitute a challenge for biomedical instrumentation development, especially for early disease detection. Pulsating arterial blood flow, providing access to cardiac-related parameters, involves the whole body. Unobtrusive and continuous acquisition of electrical bioimpedance (EBI) and photoplethysmography (PPG) constitute important techniques for monitoring the peripheral arteries, requiring novel approaches and clever means.
View Article and Find Full Text PDFBackground: Pelotherapy is the traditional procedure of applying curative muds on the skin's surface-shown to have a positive effect on the human body and cure illnesses. The effect of pelotherapy is complex, functioning through several mechanisms, and depends on the skin's functional condition. The current research objective was to develop a methodology and electrodes to assess the passage of the chemical and biologically active compounds of curative mud through human skin by performing electrical bioimpedance (EBI) analysis.
View Article and Find Full Text PDFBackground: Wearable technologies for monitoring cardiovascular parameters, including electrocardiography (ECG) and impedance cardiography (ICG), propose a challenging research subject. The expectancy for wearable devices to be unobtrusive and miniaturized sets a goal to develop smarter devices and better methods for signal acquisition, processing, and decision-making.
Methods: In this work, non-standard electrode placement configurations (EPC) on the thoracic area and single arm were experimented for ECG signal acquisition.
Annu Int Conf IEEE Eng Med Biol Soc
November 2021
ICG (impedance cardiography) and ECG (electrocardiography) provide important indications about functioning of the heart and of overall cardiovascular system. Measuring ICG along with ECG using wearable devices will improve the quality of health monitoring, as ICG points to important hemodynamic parameters (such as time intervals, stroke volume, cardiac output, and their variability). In this work, various electrode locations (12 different setups) have been tested for possible joint ECG & ICG data acquisition (using the same electrodes) and signal quality has been evaluated for every setup.
View Article and Find Full Text PDFChanges in a certain parameter are often a few magnitudes smaller than the base value of the parameter, specifying significant requirements for the dynamic range and noise levels of the measurement system. In case of electrical bioimpedance acquisition, the variations can be 1000 times smaller than the entire measured value. Synchronous or lock-in measurement of these variations is discussed in the current paper, and novel measurement solutions are presented.
View Article and Find Full Text PDFIn the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g.
View Article and Find Full Text PDFEnergy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.
View Article and Find Full Text PDFThe multisine excitation is widely used in impedance measurements to retain the advantages of the sine wave, while reducing the measurement time. Adding up sine waves increases the amplitude of the excitation signal, but, for the linearity assumption to be valid, the overall amplitude of the signal needs to be kept low. Thus, the crest factor (CF) of the excitation signal must be minimized.
View Article and Find Full Text PDFStud Health Technol Inform
April 2014
The paper proposes a wearable multimodal data acquisition system for biological signals. The system enables logging of electrical bioimpedance signals from multiple electrodes, electrocardiographic signals (ECG), acceleration signals from multiple locations, and spirometric data from a moving object. Later it will be used to conduct field measurements for characterizing health of the object under investigation.
View Article and Find Full Text PDFThe paper presents a non-invasive method and system for a long-term and continuous monitoring of the central aortic pressure (CAP) waveform and the augmentation index (AI). The CAP curve is estimated from the measured radial electrical bio-impedance (EBI) using spectral domain transfer functions (TF), which are established on the basis of data analysis during clinical experiments. Experiments were carried out on 3 volunteers by now.
View Article and Find Full Text PDFUsing of binary waveforms in the fast impedance spectroscopy of biological objects is discussed in the paper. There is shown that the energy of binary waveforms can be concentrated onto selected separate frequencies. We can optimize the binary excitation waveform depending on the shape of frequency response of the impedance under study to maximize the levels of signal components with certain selected frequencies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
The paper discusses the usability of multi-frequency binary waveforms for broadband excitation in fast measurements of impedance spectrum of biological objects. It is shown that up to 70% of the energy of the amplitude spectrum of such two-level binary signals can be concentrated into the selected separate frequencies. The levels of selected frequency components are controllable in tens and hundreds of times.
View Article and Find Full Text PDF