ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts.
View Article and Find Full Text PDFIn semiconductor nanowires, understanding both the sources of luminescence (excitonic recombination, defects, etc.) and the distribution of luminescent centers (be they uniformly distributed, or concentrated at structural defects or at the surface) is important for synthesis and applications. We develop scanning transmission electron microscopy-cathodoluminescence (STEM-CL) measurements, allowing the structure and cathodoluminescence (CL) of single ZnO nanowires to be mapped at high resolution.
View Article and Find Full Text PDFSuperconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20⁻250 nm.
View Article and Find Full Text PDFOptimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables.
View Article and Find Full Text PDFTwo objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants.
View Article and Find Full Text PDFWe report the growth of InAs(1-x)Sb(x) nanowires (0 ≤ x ≤ 0.15) grown by catalyst-free molecular beam epitaxy on silicon (111) substrates. We observed a sharp decrease of stacking fault density in the InAs(1-x)Sb(x) nanowire crystal structure with increasing antimony content.
View Article and Find Full Text PDFWe demonstrate experimentally that by engineering the structural asymmetry of the primary unit cell of a symmetrically nanopatterned metallic film the optical transmission becomes strongly dependent on the polarization of the incident wave. By considering a specific plasmonic structure consisting of square arrays of nanoscale asymmetric cruciform apertures we show that the enhanced optical anisotropy is induced by the excitation inside the apertures of localized surface plasmon resonances. The measured transmission spectra of these plasmonic arrays show a transmission maximum whose spectral location can be tuned by almost 50% by simply varying the in-plane polarization of the incident photons.
View Article and Find Full Text PDFIn response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can then be observed precisely from the plasmonic hotspots.
View Article and Find Full Text PDF