Unlabelled: The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods.
View Article and Find Full Text PDFHuman activities are the leading cause of biological invasions that cause ecologic and economic damage around the world. Aquatic invasive species (AIS) are often spread by recreational anglers who visit two or more bodies of water within a short time frame. Movement data from anglers are, therefore, critical to predicting, preventing, and monitoring the spread of AIS.
View Article and Find Full Text PDFIntegr Environ Assess Manag
November 2022
Lake sturgeon (Acipenser fulvescens) populations have significantly declined across their historic range, in large part due to anthropogenic impacts that have likely been exacerbated by the life-history traits of this slow-growing and long-lived species. We developed a population model to explore how Contaminants of Emerging Concern (CECs) impact lake sturgeon populations. We explored how different physiological modes of action (pMoAs) of CECs impacted population abundance and recovery and how different simulated management actions could enable recovery.
View Article and Find Full Text PDFContaminants of emerging concern (CECs) are ubiquitous, present in complex chemical mixtures, and represent a threat to the Great Lake ecosystem. Mitigation strategies are needed to protect populations of key species, but knowledge about ecological and biological effects of CECs at the population level are limited. In this study, we combined laboratory data on CEC effects at the individual-level with in-situ CEC concentration data in a walleye (Sander vitreus) population model to simulate the effectiveness of different CEC mitigation strategies in the Maumee River and Lake Erie.
View Article and Find Full Text PDFImproper storage conditions or processing of milk leads to potential spoilage and illness, due in part to temperature abuse, allowing bacteria present to grow and spoil the product. However, certain proteins naturally found in raw milk, such as lactoferrin, have reported antibacterial properties. The levels of lactoferrin required to effectively inhibit growth of pathogens have not been investigated thoroughly.
View Article and Find Full Text PDFHeterosporis sutherlandae is an invasive microsporidian parasite in the Great Lakes region of North America that infects the skeletal muscle of numerous fish species, rendering the fillet unfit for human consumption. Although H. sutherlandae has been identified as a pathogen of concern by state management agencies, there is little information to inform regulation and intervention.
View Article and Find Full Text PDFHeterosporis sutherlandae is an emerging microsporidian fish parasite in the Great Lakes region. H. sutherlandae forms lesions in the muscle tissue of fishes important to aquaculture and sport fishing.
View Article and Find Full Text PDFAge at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity.
View Article and Find Full Text PDFSize-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed.
View Article and Find Full Text PDFWe used a field experiment, population modeling, and an analysis of 30 years of data from walleye (Sander vitreus; a freshwater fish) in Lake Erie to show that maternal influences on offspring survival can affect population dynamics. We first demonstrate experimentally that the survival of juvenile walleye increases with egg size (and, to a lesser degree, female energy reserves). Because egg size in this species tends to increase with maternal age, we then model these maternal influences on offspring survival as a function of maternal age to show that adult age structure can affect the maximum rate at which a population can produce new adults.
View Article and Find Full Text PDFKnowledge of the relationship between the number of offspring produced (recruitment) and adult abundance is fundamental to forecasting the dynamics of an exploited population. Although small-scale experiments have documented the importance of maternal quality to offspring survival in plants and animals, the effects of this association on the recruitment dynamics of exploited populations are largely unknown. Here, we present results from both a simple population model and a meta-analysis of time-series data from 25 species of exploited marine fishes that suggest that a population of older, larger individuals has a higher maximum reproductive rate than an equivalent population of younger, smaller individuals, and that this difference increases with the reproductive lifespan of the population.
View Article and Find Full Text PDF