Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high-spin Gd ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the double electron-electron resonance (DEER) experiment.
View Article and Find Full Text PDFThe sensitivity of pulsed electron paramagnetic resonance (EPR) measurements on broad-line paramagnetic centers is often limited by the available excitation bandwidth. One way to increase excitation bandwidth is through the use of chirp or composite pulses. However, performance can be limited by cavity or detection bandwidth, which in commercial systems is typically 100-200MHz.
View Article and Find Full Text PDFThis work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron-electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin.
View Article and Find Full Text PDFA technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.
View Article and Find Full Text PDFIn this communication we report initial results using high power pulsed techniques at 94 GHz to perform solid state Dynamic Nuclear Polarisation (DNP) on high volume samples. It is shown that excitation with short pulses, comparable to the pi/2 pulse length, at fast repetition rates can result in higher DNP enhancements relative to continuous wave (cw) excitation for the same average power. Peak enhancements are observed at an average power of only a few hundred mW delivered to the sample.
View Article and Find Full Text PDFWe describe a quasioptical 94 GHz kW pulsed electron paramagnetic resonance spectrometer featuring pi/2 pulses as short as 5 ns and an instantaneous bandwidth of 1 GHz in nonresonant sample holders operating in induction mode and at low temperatures. Low power pulses can be as short as 200 ps and kilowatt pulses as short as 1.5 ns with timing resolution of a few hundred picoseconds.
View Article and Find Full Text PDFForce detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and image distributions of electron spins, and it offers both extremely high absolute sensitivity and high spatial imaging resolution.
View Article and Find Full Text PDF