The gut microbiota affects tissue physiology, metabolism, and function of both the immune and nervous systems. We found that intrinsic enteric-associated neurons (iEANs) in mice are functionally adapted to the intestinal segment they occupy; ileal and colonic neurons are more responsive to microbial colonization than duodenal neurons. Specifically, a microbially responsive subset of viscerofugal CART neurons, enriched in the ileum and colon, modulated feeding and glucose metabolism.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFConnections between the gut and brain monitor the intestinal tissue and its microbial and dietary content, regulating both physiological intestinal functions such as nutrient absorption and motility, and brain-wired feeding behaviour. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations.
View Article and Find Full Text PDFEnteric-associated neurons (EANs) are closely associated with immune cells and continuously monitor and modulate homeostatic intestinal functions, including motility and nutrient sensing. Bidirectional interactions between neuronal and immune cells are altered during disease processes such as neurodegeneration or irritable bowel syndrome. We investigated the effects of infection-induced inflammation on intrinsic EANs (iEANs) and the role of intestinal muscularis macrophages (MMs) in this context.
View Article and Find Full Text PDFCurr Opin Immunol
February 2020
The mammalian gastrointestinal tract harbors a large reservoir of tissue macrophages, which, in concert with other immune cells, help to maintain a delicate balance between tolerance to commensal microbes and food antigens, and resistance to potentially harmful microbes or toxins. Beyond their roles in resistance and tolerance, recent studies have uncovered novel roles played by tissue-resident, including intestinal-resident macrophages in organ physiology. Here, we will discuss recent advances in the understanding of the origin, phenotype and function of macrophages residing in the different layers of the intestine during homeostasis and under pathological conditions.
View Article and Find Full Text PDFThe intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections. Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (T) cells and FOXP3 regulatory T (pT) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are tuned to quickly respond to and amplify tissue-specific signals. Work of three independent groups in Nature uncovers a novel mode of inflammatory communication between ILC2s and neurons at mucosal surfaces.
View Article and Find Full Text PDFSickness in mammals can lead to cognition deficits, although the underlying mechanisms remain elusive. In a recent Nature Medicine article, Garré et al. (2017) report that sickness-induced cortical dendritic spine loss and impaired memory formation is mediated by CX3CR1 monocyte-derived TNF-α.
View Article and Find Full Text PDFProper adaptation to environmental perturbations is essential for tissue homeostasis. In the intestine, diverse environmental cues can be sensed by immune cells, which must balance resistance to microorganisms with tolerance, avoiding excess tissue damage. By applying imaging and transcriptional profiling tools, we interrogated how distinct microenvironments in the gut regulate resident macrophages.
View Article and Find Full Text PDFHere we report a summary classification and the features of five anaerobic oral bacteria from the family Peptostreptococcaceae. Bacterial strains were isolated from human subgingival plaque. Strains ACC19a, CM2, CM5, and OBRC8 represent the first known cultivable members of "yet uncultured" human oral taxon 081; strain AS15 belongs to "cultivable" human oral taxon 377.
View Article and Find Full Text PDFIntestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the leading causes of neurological disability and death in the USA across all age groups, ethnicities, and incomes. In addition to the short-term morbidity and mortality, TBI leads to epilepsy and severe neurocognitive symptoms, both of which are referenced to post-traumatic hippocampal dysfunction, although the mechanisms of such hippocampal dysfunction are incompletely understood. Here, we study the temporal profile of the transcription of three select immediate early gene (IEG) markers of neuronal hyperactivation, plasticity, and injury, c-fos, brain-derived neurotrophic factor (BDNF), and Bax, in the acute period following the epileptogenic lateral fluid percussion injury in a rodent TBI model.
View Article and Find Full Text PDFThree strictly anaerobic, Gram-positive, non-spore-forming, rod-shaped, motile bacteria, designated strains ACB1(T), ACB7(T) and ACB8, were isolated from human subgingival dental plaque. All strains required yeast extract for growth. Strains ACB1(T) and ACB8 were able to grow on glucose, lactose, maltose, maltodextrin and raffinose; strain ACB7(T) grew weakly on sucrose only.
View Article and Find Full Text PDFRepetitive transcranial magnetic stimulation (rTMS) is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS) is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP), presumably reflecting long-term depression (LTD) -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown.
View Article and Find Full Text PDFObjective: Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular.
View Article and Find Full Text PDFPresent in all organs, mononuclear phagocytes consist of a heterogeneous population of hematopoietic cells whose main role is to ensure tissue homeostasis through their ability to scavenge cell debris, promote tissue repair and maintain tolerance to self-antigens while simultaneously inducing innate and adaptive immune responses against foreign antigens that breach the tissue. The intestinal mucosa is particularly exposed to foreign antigen, through constant exposure to high loads of commensal bacteria and dietary antigens as well as providing a site of entry for viral and bacterial pathogens. The molecular mechanisms that control the intestinal ability to distinguish between "innocuous" and "dangerous" antigens remains poorly understood although it is clear that mononuclear phagocytes play a key role in this process.
View Article and Find Full Text PDFBackground: Repetitive transcranial magnetic stimulation (rTMS) is emerging as a valuable therapeutic and diagnostic tool. rTMS appears particularly promising for disorders characterized by positive sensory phenomena that are attributable to alterations in sensory cortical excitability. Among these are tinnitus, auditory and visual hallucinations, and pain syndromes.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a method for modulating cortical excitability by weak constant electrical current that is applied through scalp electrodes. Although often described in terms of anodal or cathodal stimulation, depending on which scalp electrode pole is proximal to the cortical region of interest, it is the orientation of neuronal structures relative to the direct current (DC) vector that determines the effect of tDCS. To investigate the contribution of neural pathway orientation, we studied DCS-mediated neuromodulation in an in vitro rat hippocampal slice preparation.
View Article and Find Full Text PDFPaired-pulse transcranial magnetic stimulation (ppTMS) is a noninvasive method to measure cortical inhibition in vivo. Long interpulse interval (50-500 ms) ppTMS (LI-ppTMS) provokes intracortical inhibitory circuits and can reveal pathologically impaired cortical inhibition in disorders such as epilepsy. Adaptation of ppTMS protocols to rodent disease models is highly desirable to facilitate basic and translational research.
View Article and Find Full Text PDFObjectives: To approximate methods for human transcranial magnetic stimulation (TMS) in rats, we tested whether lateralized cortical stimulation resulting in selective activation of one forelimb contralateral to the site of stimulation could be achieved by TMS in the rat.
Methods: Motor evoked potentials (MEP) were recorded from the brachioradialis muscle bilaterally in adult male anesthetized rats (n=13). A figure-of-eight TMS coil was positioned lateral to midline.
Low-frequency repetitive transcranial magnetic stimulation (rTMS) is emerging as a therapeutic tool for patients with intractable epilepsy. Although seizures during treatment have been reported as adverse events in some patients, the nature and severity of seizures that may be provoked by low-frequency rTMS in patients with epilepsy have not been extensively studied. Accordingly, this article documents seizures in patients (n=5) with intractable epilepsy and average seizure frequency greater than one per day who underwent 1-Hz rTMS for seizure suppression.
View Article and Find Full Text PDF