Introduction: , an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control.
Methods: To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention.
PLoS Pathog
August 2023
[This corrects the article DOI: 10.1371/journal.ppat.
View Article and Find Full Text PDFPLoS Pathog
July 2023
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle.
View Article and Find Full Text PDFStriated intracytoplasmic membranes in alphaproteobacteria are often reminiscent of millefoglie pastries. A new study reveals a protein complex homologous to that responsible for mitochondrial cristae formation drives intracytoplasmic membrane formation, thereby establishing bacterial ancestry for the biogenesis of mitochondrial cristae.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2023
Previously, we reported the development of novel small molecules that are potent inhibitors of the glycolytic enzyme phosphofructokinase (PFK) of and related protists responsible for serious diseases in humans and domestic animals. Cultured bloodstream-form trypanosomes, which are fully reliant on glycolysis for their ATP production, are rapidly killed at submicromolar concentrations of these compounds, which have no effect on the activity of human PFKs and human cells. Single-day oral dosing cures stage 1 human trypanosomiasis in an animal model.
View Article and Find Full Text PDFExp Parasitol
December 2022
Rhipicephalus (Boophilus) microplus (Canestrini, 1887) is one of the most important ectoparasites of cattle, causing severe economic losses in tropical and subtropical regions of the world. The selection of resistance to the most commonly used commercial acaricides has stimulated the search for new products for tick control. The identification and development of drugs that inhibit key tick enzymes, such as glutathione S-transferase (GST), is a rational approach that has already been applied to other parasites than ticks.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2022
The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates.
View Article and Find Full Text PDF6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2020
During its intra-erythrocytic growth phase, the malaria parasite Plasmodium falciparum relies heavily on glycolysis for its energy requirements. Pyruvate kinase (PYK) is essential for regulating glycolytic flux and for ATP production, yet the allosteric mechanism of P. falciparum PYK (PfPYK) remains poorly understood.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
FEBS J
July 2020
Trypanosomatids possess glycosome organelles that contain much of the glycolytic machinery, including phosphofructokinase (PFK). We present kinetic and structural data for PFK from three human pathogenic trypanosomatids, illustrating intriguing differences that may reflect evolutionary adaptations to differing ecological niches. The activity of Leishmania PFK - to a much larger extent than Trypanosoma PFK - is reliant on AMP for activity regulation, with 1 mm AMP increasing the L.
View Article and Find Full Text PDFAfrican trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs.
View Article and Find Full Text PDFIn response to the stress of infection, Mycobacterium tuberculosis (Mtb) reprograms its metabolism to accommodate nutrient and energetic demands in a changing environment. Pyruvate kinase (PYK) is an essential glycolytic enzyme in the phosphoenolpyruvate-pyruvate-oxaloacetate node that is a central switch point for carbon flux distribution. Here we show that the competitive binding of pentose monophosphate inhibitors or the activator glucose 6-phosphate (G6P) to MtbPYK tightly regulates the metabolic flux.
View Article and Find Full Text PDFRedox Biol
September 2019
Trypanothione (T(SH)) is the main antioxidant metabolite for peroxide reduction in Trypanosoma cruzi; therefore, its metabolism has attracted attention for therapeutic intervention against Chagas disease. To validate drug targets within the T(SH) metabolism, the strategies and methods of Metabolic Control Analysis and kinetic modeling of the metabolic pathway were used here, to identify the steps that mainly control the pathway fluxes and which could be appropriate sites for therapeutic intervention. For that purpose, gamma-glutamylcysteine synthetase (γECS), trypanothione synthetase (TryS), trypanothione reductase (TryR) and the tryparedoxin cytosolic isoform 1 (TXN1) were separately overexpressed to different levels in T.
View Article and Find Full Text PDFEntamoeba histolytica has neither Krebs cycle nor oxidative phosphorylation activities; therefore, glycolysis is the main pathway for ATP supply and provision of carbon skeleton precursors for the synthesis of macromolecules. Glucose is metabolized through fermentative glycolysis, producing ethanol as its main end-product as well as some acetate. Amoebal glycolysis markedly differs from the typical Embden-Meyerhof-Parnas pathway present in human cells: (i) by the use of inorganic pyrophosphate, instead of ATP, as the high-energy phospho group donor; (ii) with one exception, the pathway enzymes can catalyze reversible reactions under physiological conditions; (iii) there is no allosteric regulation and sigmoidal kinetic behavior of key enzymes; and (iv) the presence of some glycolytic and fermentation enzymes similar to those of anaerobic bacteria.
View Article and Find Full Text PDFEukaryotic ATP-dependent phosphofructokinases (PFKs) are often considered unidirectional enzymes catalysing the transfer of a phospho moiety from ATP to fructose 6-phosphate to produce ADP and fructose 1,6-bisphosphate. The reverse reaction is not generally considered to occur under normal conditions and has never been demonstrated for any eukaryotic ATP-dependent PFKs, though it does occur in inorganic pyrophosphate-dependent PFKs and has been experimentally shown for bacterial ATP-dependent PFKs. The evidence is provided via two orthogonal assays that all three human PFK isoforms can catalyse the reverse reaction , allowing determination of kinetic properties.
View Article and Find Full Text PDFIn the search for therapeutic targets in the intermediary metabolism of trypanosomatids the gene essentiality criterion as determined by using knock-out and knock-down genetic strategies is commonly applied. As most of the evaluated enzymes/transporters have turned out to be essential for parasite survival, additional criteria and approaches are clearly required for suitable drug target prioritization. The fundamentals of Metabolic Control Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient) and metabolic intermediate concentrations (concentration control coefficient).
View Article and Find Full Text PDFWe have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation is estimated to be ∼0.
View Article and Find Full Text PDF