Publications by authors named "Paul A Lefebvre"

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the promoter, conferred motility only in hypoxic conditions.

View Article and Find Full Text PDF

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences.

View Article and Find Full Text PDF

We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales.

View Article and Find Full Text PDF

A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H.

View Article and Find Full Text PDF

Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns.

View Article and Find Full Text PDF

The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes-LF1, LF2, LF3, and LF4-cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases.

View Article and Find Full Text PDF

The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation.

View Article and Find Full Text PDF

Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy.

View Article and Find Full Text PDF

The objective of this work was to quantify the kinetic behavior of Dunaliella primolecta (D. primolecta) subjected to controlled fluid flow under laboratory conditions. In situ velocities of D.

View Article and Find Full Text PDF

Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2.

View Article and Find Full Text PDF

Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella.

View Article and Find Full Text PDF

Little is known about how cells regulate the size of their organelles. In this study, we find that proper flagellar length control in Chlamydomonas reinhardtii requires the activity of a new member of the cyclin-dependent kinase (CDK) family, which is encoded by the LF2 (long flagella 2) gene. This novel CDK contains all of the important residues that are essential for kinase activity but lacks the cyclin-binding motif PSTAIRE.

View Article and Find Full Text PDF

Flagellar length is tightly regulated in the biflagellate alga Chlamydomonas reinhardtii. Several genes required for control of flagellar length have been identified, including LF1, a gene required to assemble normal-length flagella. The lf1 mutation causes cells to assemble extra-long flagella and to regenerate flagella very slowly after amputation.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H.

View Article and Find Full Text PDF

Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules.

View Article and Find Full Text PDF

How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth.

View Article and Find Full Text PDF

Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths.

View Article and Find Full Text PDF

Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length.

View Article and Find Full Text PDF

We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C.

View Article and Find Full Text PDF

The FLA10 gene product (Fla10p) in Chlamydomonas, a heterotrimeric kinesin-II, plays a crucial role in flagellar assembly as a motor protein driving intraflagellar transport. This protein has also been suggested to play a role in mitosis based on its localization to mitotic spindle. A role for Fla10p in mitosis has been difficult to test because to date only conditional (temperature-sensitive) mutant alleles were available, and it is not known whether these retain residual function for mitosis at the non-permissive temperature.

View Article and Find Full Text PDF

Chlamydomonas flagella can undergo a calcium-dependent conversion between an asymmetric ciliary waveform and a symmetric flagellar waveform. Mutations at three MBO loci abolish the predominant ciliary waveform and result in cells that move backward only with the flagellar waveform. We have cloned and characterized the MBO2 gene.

View Article and Find Full Text PDF