Am J Physiol Lung Cell Mol Physiol
November 2015
In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3β (GSK3β) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3β is involved in oxidative stress-induced glucocorticoid insensitivity in COPD.
View Article and Find Full Text PDFOxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury.
View Article and Find Full Text PDFJ Allergy Clin Immunol
September 2015
Background: Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology.
Objective: We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells.
Oxidative stress is now recognized as a major predisposing factor in the pathogenesis of COPD. Existing therapies for COPD are ineffective at halting disease progression, with bronchodilators being the mainstay of pharmacotherapy, providing symptomatic relief only. It is, therefore, important for a better understanding of the underlying mechanisms by which oxidative stress drives disease pathogenesis to develop novel and more effective therapies.
View Article and Find Full Text PDFIncreasing evidence implicates IgG autoantibodies against oxidized forms of low density lipoprotein (oxLDL) in the pathophysiology of atherosclerotic arterial disease. However, insufficient knowledge of their structure and function is a key gap. Using an elderly LDL receptor-deficient atherosclerotic mouse, we isolated a novel IgG3k against oxLDL (designated MAb LO1).
View Article and Find Full Text PDFCurr Opin Pharmacol
June 2012
Although glucocorticoids are very effective in suppressing inflammation there is a clear clinical unmet need for new or improved glucocorticoids in patients with severe asthma and COPD. Recent developments include the targeted deposition of ultrafine glucocorticoid particles to treat small airways and the potential of novel agents that have a reduced side effect profile. Understanding the drivers of relative glucocorticoid resistance in these patients may lead to the development of newer drugs aimed at subsets of patients, for example asthmatics with high periostin levels.
View Article and Find Full Text PDFCOPD is a disease of innate immunity and bacterial infections are a dominant cause of exacerbations in the later stages resulting in poor health and high mortality. The pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) is sensed by immune cells through activation of the toll-like receptor 4 (TLR4). This leads to the activation of NADPH oxidase (NOX) and NF-κB which together drive COPD inflammation.
View Article and Find Full Text PDFRationale: There is increasing evidence for the presence of autoantibodies in chronic obstructive pulmonary disease (COPD). Chronic oxidative stress is an essential component in COPD pathogenesis and can lead to increased levels of highly reactive carbonyls in the lung, which could result in the formation of highly immunogenic carbonyl adducts on "self" proteins.
Objectives: To determine the presence of autoantibodies to carbonyl-modified protein in patients with COPD and in a murine model of chronic ozone exposure.
Background: The key co-repressor complex components HDAC-2, Mi-2alpha/beta and mSin3a are all critical to the regulation of gene transcription. HDAC-2 function is impaired by oxidative stress in a PI3Kdelta dependant manner which may be involved in the chronic glucocorticoid insensitive inflammation in the lungs of COPD patients. However, the impact of cigarette smoke exposure on the expression of mSin3a and Mi2alpha/beta and their role in glucocorticoid responsiveness is unknown.
View Article and Find Full Text PDFBackground: Glucocorticoid function is markedly impaired in the lungs of patients with chronic obstructive pulmonary disease (COPD). This reduction in glucocorticoid sensitivity might be due to an oxidant-mediated increase in phosphoinositol 3-kinase (PI3K) delta signaling.
Objective: We sought to determine the role of PI3Kdelta in the reduced glucocorticoid responsiveness in patients with COPD.
Background: Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2)-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs.
View Article and Find Full Text PDFRationale: There is an increasing prevalence of reduced responsiveness to glucocorticoid therapy in severe asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanism of this remains unknown. Recent studies have shown that histone deacetylase activity, which is critical to glucocorticoid function, is altered by oxidant stress and may be involved in the development of glucocorticoid insensitivity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2008
Oxidative stress as a result of cigarette smoking is an important etiologic factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), a chronic steroid-insensitive inflammatory disease of the airways. Histone deacetylase-2 (HDAC2), a critical component of the corticosteroid anti-inflammatory action, is impaired in lungs of patients with COPD and correlates with disease severity. We demonstrate here that curcumin (diferuloylmethane), a dietary polyphenol, at nanomolar concentrations specifically restores cigarette smoke extract (CSE)- or oxidative stress-impaired HDAC2 activity and corticosteroid efficacy in vitro with an EC(50) of approximately 30 nM and 200 nM, respectively.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2007
Chronic obstructive pulmonary disease (COPD) is a smoking-related disease that lacks effective therapies due partly to the poor understanding of disease pathogenesis. The aim of this study was to identify molecular pathways that could be responsible for the damaging consequences of smoking. To do this, we employed Gene Set Enrichment Analysis to analyze differences in global gene expression, which we then related to the pathological changes induced by cigarette smoke (CS).
View Article and Find Full Text PDFInsensitivity to corticosteroid treatment in inflammatory conditions, such as asthma and chronic obstructive pulmonary disease, present considerable management problems and cost burdens to health services. Oxidative stress is a major component of chronic inflammation and can have a significant suppressive effect on corticosteroid efficacy. Recent advances in the understanding of both the mechanisms of corticosteroid action and corticosteroid insensitivity have provided hope for a therapeutic strategy of restoring corticosteroid sensitivity.
View Article and Find Full Text PDFBiochem Pharmacol
November 2006
Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids.
View Article and Find Full Text PDFVEGF is fundamental in the development and maintenance of the vasculature. VEGF(165) signaling through VEGF receptor (VEGFR)-2/kinase insert domain receptor (KDR) is a highly regulated process involving the formation of a tertiary complex with glypican (GYP)-1 and neuropilin (NRP)-1. Both VEGF and VEGFR-2 expression are reduced in emphysematous lungs; however, the mechanism of regulation of VEGF(165) signaling through the VEGFR-2 complex in response to cigarette smoke exposure in vivo, and in smokers with and without chronic obstructive pulmonary disease (COPD), is still unknown.
View Article and Find Full Text PDFA series of novel corticosteroid derivatives featuring C-17 furoate ester functionality have been synthesised. Profiling in vitro and in vivo has resulted in the identification of a compound with a longer duration of action and a lower oral side effect profile in rodents compared to budesonide.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2004
Cigarette smoke-triggered inflammation is considered to play a central role in the development of chronic obstructive pulmonary disease by a mechanism that may involve enhanced proinflammatory gene transcription. Histone acetylation and deacetylation is a key regulator of the specificity and duration of gene transcription. Disruption in the nuclear histone acetylation:deacetylation balance (chromatin remodeling) may result in excessive transcription of specific proinflammatory genes in the lungs.
View Article and Find Full Text PDFClearance of apoptotic cells by phagocytosis plays an important role in the resolution of an inflammatory response. Macrophages interacting with extracellular matrix (ECM) proteins upregulate their phagocytic capacity. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function.
View Article and Find Full Text PDFPulmonary emphysema in chronic obstructive pulmonary disease (COPD) is characterized by the destruction of the alveolar walls leading to permanent enlargement of distal respiratory air spaces. A major causal factor is cigarette smoking, which produces conditions of chronic oxidative stress within the lungs. At a cellular level, increased macrophage accumulation and retention within the alveolar interstitial spaces is pivotal to the development of emphysema.
View Article and Find Full Text PDF