Publications by authors named "Paul A Kenward"

Subclinical bacterial infections (biofilms) are strongly implicated in breast augmentation failure due to capsular contracture, and while these infections are generally ascribed to common skin commensals, this remains largely unsubstantiated through robust cultivation independent analyses. To determine capsule biofilm microbial community compositions, we employed amplicon sequencing of the 16S rRNA gene using DNA extracted from breast implant capsule samples. These cultivation independent analyses revealed that capsule associated biofilms are more diverse than canonical single-species infections, but have relatively low diversity (~ <100 species) compared to many host-associated microbial communities.

View Article and Find Full Text PDF

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis-photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans.

View Article and Find Full Text PDF

We developed an efficient, scalable and inexpensive method for recovering cellular biomass from complex fluid matrices that cannot be processed using conventional filtration methods. The method uses chemical flocculation with iron oxyhydroxides, is capable of recovering greater than 90% of cellular biomass from fluids with more than 10 cells ml , and was validated using both mock communities and field samples. High quality DNA can be readily extracted from iron flocs using standard soil extraction kits.

View Article and Find Full Text PDF

Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics.

View Article and Find Full Text PDF

In this study, batch sorption experiments and X-ray adsorption spectroscopy (XAS) were utilized to investigate selenate sorption onto Shewanella putrefaciens 200R. Selenate sorption was studied as a function of pH (ranging from 3 to 7), ionic strength (ranging from 0.1 to 0.

View Article and Find Full Text PDF