Publications by authors named "Paul A Dimilla"

Mechanical compliance is emerging as an important environmental cue that can influence certain cell behaviors, such as morphology and motility. Recent in vitro studies have shown that cells preferentially migrate from less stiff to more stiff substrates; however, much of this phenomenon, termed durotaxis, remains ill-defined. To address this problem, we studied the morphology and motility of vascular smooth muscle cells on well-defined stiffness gradients.

View Article and Find Full Text PDF

Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g.

View Article and Find Full Text PDF

Synthetic biomaterials intended for the reconstruction of tissues and organs must be capable of sustaining adhesive contact with adjacent cells and tissues under mechanical and hydrodynamic stresses. To facilitate this adhesion, extracellular matrix proteins or peptide sequences are frequently immobilized to the biomaterial interface. These ligands enhance cell attachment by raising the number of cell receptor/ligand interactions, but consequently they may alter the mechanism of cell detachment.

View Article and Find Full Text PDF

To facilitate tissue integration with biomaterials proteins and peptides frequently are immobilized on the biomaterial surface. In particular, extracellular matrix proteins--which interact specifically with integrin adhesion receptors on the cell surface--can stimulate initial cell attachment by serving both as a ligand for receptor-mediated attachment and as a stimulant of focal adhesion formation and cytoskeletal reorganization. Consequently, the strength of cell adhesion should depend both on the strength of cell/surface contacts and cytoskeleton-dependent properties of the cell (i.

View Article and Find Full Text PDF