Phosphorylation of ion channels plays an important role in the regulation of cardiac function, but signaling mechanisms controlling dephosphorylation are not well understood. We have tested the hypothesis that p(21)-activated kinase-1 (Pak1), a serine-threonine protein kinase regulated by Ras-related small G proteins, regulates sinoatrial node (SAN) ion channel activity through a mechanism involving protein phosphatase 2A. We report a novel role of Pak1-mediated signaling in attenuating isoproterenol-induced enhancement of L-type Ca(2+) current (I(CaL)) and delayed rectifier potassium current (I(K)) in guinea pig SAN pacemaker cells.
View Article and Find Full Text PDFNa+-Ca2+ exchange (NCX) current has been suggested to play a role in cardiac pacemaking, particularly in association with Ca2+ release from the sarcoplasmic reticulum (SR) that occurs just before the action potential upstroke. The present experiments explore in more detail the contribution of NCX to pacemaking. Na+-Ca2+ exchange current was inhibited by rapid switch to low-Na+ solution (with Li+ replacing Na+) within the time course of a single cardiac cycle to avoid slow secondary effects.
View Article and Find Full Text PDFThe aim of this study was to investigate possible regulation of the hyperpolarization-activated current (I(f)) by cytosolic calcium in guinea-pig sino-atrial (SA) node cells. Isolated SA node cells were superfused with physiological saline solution (36 degrees C) and the perforated patch voltage-clamp technique used to record I(f) activated by hyperpolarizing voltage steps. A 10-min loading of SA node cells with the calcium chelator BAPTA (using 10 microM BAPTA-AM) significantly reduced the amplitude of I(f) at all potentials studied (69+/-8% at -80 mV, n=6).
View Article and Find Full Text PDF