Publications by authors named "Paul A Bromann"

The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied.

View Article and Find Full Text PDF

In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined.

View Article and Find Full Text PDF

Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro.

View Article and Find Full Text PDF

The Src family of protein-tyrosine kinases (SFKs) participates in a variety of signal transduction pathways, including promotion of cell growth, prevention of apoptosis, and regulation of cell interactions and motility. In particular, SFKs are required for the mitogenic response to platelet-derived growth factor (PDGF). However, it is not clear whether there is a discrete SFK-specific pathway leading to enhanced gene expression or whether SFKs act to generally enhance PDGF-stimulated gene expression.

View Article and Find Full Text PDF

Src family tyrosine kinases (SFKs) are involved in a diverse array of physiological processes, as highlighted in this review. An overview of how SFKs interact with, and participate in signaling from, receptor tyrosine kinases (RTKs) is discussed. And also, how SFKs are activated by RTKs, and how SFKs, in turn, can activate RTKs, as well as how SFKs can promote signaling from growth factor receptors in a number of ways including participation in signaling pathways required for DNA synthesis, control of receptor turnover, actin cytoskeleton rearrangements and motility, and survival are discussed.

View Article and Find Full Text PDF

Formation of the postsynaptic membrane at the skeletal neuromuscular junction (NMJ) requires activation of the muscle-specific receptor tyrosine kinase (MuSK). Few intracellular mediators or modulators of MuSK actions are known. E3 ubiquitin ligases may serve this role, because activities of several receptor tyrosine kinases, G-protein-coupled receptors and channels are modulated by ubiquitination.

View Article and Find Full Text PDF