Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival.
View Article and Find Full Text PDFCalreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) is a signaling lipid that has broad roles, working either intracellularly through various protein targets, or extracellularly via a family of five G-protein coupled receptors Agents that selectively and specifically target each of the S1P receptors have been sought as both biological tools and potential therapeutics. JTE-013, a small molecule antagonist of S1P receptors 2 and 4 (S1P and S1P) has been widely used in defining the roles of these receptors in various biological processes. Indeed, our previous studies showed that JTE-013 had anti-acute myeloid leukaemia (AML) activity, supporting a role for S1P in the biology and therapeutic targeting of AML.
View Article and Find Full Text PDFNat Cell Biol
July 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFIt is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment.
View Article and Find Full Text PDFSphingosine kinase 1 (SK1) is a signalling enzyme that catalyses the phosphorylation of sphingosine to generate the bioactive lipid sphingosine 1-phosphate (S1P). A number of SK1 inhibitors and chemotherapeutics can induce the degradation of SK1, with the loss of this pro-survival enzyme shown to significantly contribute to the anti-cancer properties of these agents. Here we define the mechanistic basis for this degradation of SK1 in response to SK1 inhibitors, chemotherapeutics, and in natural protein turnover.
View Article and Find Full Text PDFWhile the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death.
View Article and Find Full Text PDFSphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling.
View Article and Find Full Text PDFThe proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive malignancy where despite improvements in conventional chemotherapy and bone marrow transplantation, overall survival remains poor. Sphingosine kinase 1 (SPHK1) generates the bioactive lipid sphingosine 1-phosphate (S1P) and has established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers. The role and targeting of SPHK1 in primary AML, however, has not been previously investigated.
View Article and Find Full Text PDFWhile both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear.
View Article and Find Full Text PDFThe dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy.
View Article and Find Full Text PDFObjectives: The use of endothelial progenitor cells in vascular therapies has been limited due to their low numbers present in the bone marrow and peripheral blood. The aim of this study was to investigate the effect of sphingosine kinase on the de-differentiation of mature human endothelial cells toward a progenitor phenotype.
Methods: The lipid enzyme sphingosine kinase-1 was lentivirally over-expressed in human umbilical vein endothelial cells and cells were analyzed for progenitor phenotype and function.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1.
View Article and Find Full Text PDFSK1 (sphingosine kinase 1) plays an important role in many aspects of cellular regulation. Most notably, elevated cellular SK1 activity leads to increased cell proliferation, protection from apoptosis, and induction of neoplastic transformation. We have previously shown that translocation of SK1 from the cytoplasm to the plasma membrane is integral for oncogenesis mediated by this enzyme.
View Article and Find Full Text PDFSphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined.
View Article and Find Full Text PDFInt J Biochem Cell Biol
April 2009
Sphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein-protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins.
View Article and Find Full Text PDFTetracycline-regulated expression systems have been widely used for inducible protein expression in cultured mammalian cells. With these systems, however, leakiness in expression of the target gene in the absence of the inducing agent is a frequent problem. Here we describe a novel approach to overcome this problem that involves the incorporation of AU-rich mRNA destabilizing elements (AREs) into the 3' untranslated regions of the tetracycline-inducible constructs.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2.
View Article and Find Full Text PDFSphingosine kinases catalyze the formation of sphingosine 1-phosphate, a bioactive lipid involved in many aspects of cellular regulation, including the fundamental biological processes of cell growth and survival. A diverse range of cell agonists induce activation of human sphingosine kinase 1 (hSK1) and, commonly, its translocation to the plasma membrane. Although the activation of hSK1 in response to at least some agonists occurs directly via its phosphorylation at Ser225 by ERK1/2, many aspects governing the regulation of this phosphorylation and subsequent translocation remain unknown.
View Article and Find Full Text PDFSphingosine kinase (SK) 1 catalyzes the formation of the bioactive lipid sphingosine 1-phosphate, and has been implicated in several biological processes in mammalian cells, including enhanced proliferation, inhibition of apoptosis, and oncogenesis. Human SK (hSK) 1 possesses high instrinsic catalytic activity which can be further increased by a diverse array of cellular agonists. We have shown previously that this activation occurs as a direct consequence of extracellular signal-regulated kinase 1/2-mediated phosphorylation at Ser225, which not only increases catalytic activity, but is also necessary for agonist-induced translocation of hSK1 to the plasma membrane.
View Article and Find Full Text PDFSphingosine kinase catalyses the phosphorylation of sphingosine to generate sphingosine 1-phosphate, a lipid signaling molecule implicated in roles in a diverse range of mammalian cell processes through its action as both a ligand for G-protein-coupled cell-surface receptors and an apparent intracellular second messenger. This paper describes a rapid, sensitive, and reproducible assay for sphingosine kinase activity using biotinylated sphingosine (biotinyl-Sph) as a substrate and capturing the phosphorylated product with streptavidin-coated membranes. We have shown that both human sphingosine kinase 1 and 2 (hSK1 and hSK2) can efficiently phosphorylate biotinyl-Sph, with K(m) values similar to those of sphingosine.
View Article and Find Full Text PDFSphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative.
View Article and Find Full Text PDFSphingosine kinase catalyzes the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses including mitogenesis, anti-apoptosis, and expression of inflammatory molecules. Despite the importance of sphingosine kinase, very little is known regarding its structure or mechanism of catalysis. Moreover, sphingosine kinase does not contain recognizable catalytic or substrate-binding sites, based on sequence motifs found in other kinases.
View Article and Find Full Text PDFTumor necrosis factor-alpha (TNF) receptor-associated factor 2 (TRAF2) is one of the major mediators of TNF receptor superfamily transducing TNF signaling to various functional targets, including activation of NF-kappa B, JNK, and antiapoptosis. We investigated how TRAF2 mediates differentially the distinct downstream signals. We now report a novel mechanism of TRAF2-mediated signal transduction revealed by an association of TRAF2 with sphingosine kinase (SphK), a lipid kinase that is responsible for the production of sphingosine 1-phosphate.
View Article and Find Full Text PDF