Small molecule stimulation of β-cell regeneration has emerged as a promising therapeutic strategy for diabetes. Although chemical inhibition of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is sufficient to enhance β-cell replication, current lead compounds have inadequate cellular potency for in vivo application. Herein, we report the clinical stage anti-cancer kinase inhibitor OTS167 as a structurally novel, remarkably potent DYRK1A inhibitor and inducer of human β-cell replication.
View Article and Find Full Text PDFDiabetes is a hyperglycemic condition characterized by pancreatic β-cell dysfunction and depletion. Whereas methods for monitoring β-cell function in vivo exist, methods to deliver therapeutics to β cells are lacking. We leveraged the rare ability of β cells to concentrate zinc to preferentially trap zinc-binding molecules within β cells, resulting in β-cell-targeted compound delivery.
View Article and Find Full Text PDFFormal syntheses of tetracyclic terpenoids frondosin B and liphagal are described. Both synthetic routes rely on the use of platinum-catalyzed α,β-unsaturated carbene formation for the key C-C bond forming transformations. The successful route toward frondosin B utilizes a formal (4 + 3) cycloaddition, while the liphagal synthesis features the vinylogous addition of an enol nucleophile as a key step.
View Article and Find Full Text PDFA variety of substituted indoles and benzofurans are accessed via a platinum catalyzed annulation and vinylogous addition of enol nucleophiles. Several β-dicarbonyl compounds participate in the reaction, as do α-nitro and α-cyano carbonyl species. Subjecting the indole products to acidic conditions results in the formation of fused heterocycles.
View Article and Find Full Text PDFA novel platinum-catalyzed double heterocyclization of propargylic ethers is described. The transformation exploits the intermediacy of a key α,β-unsaturated carbene. The reactivity of this carbene is such that systems can be developed which avoid a complicating 1,2-hydrogen migration, allowing remarkable versatility in the selective syntheses of oxygen- and nitrogen-containing vicinal bis-heterocyclic compounds.
View Article and Find Full Text PDFA number of diversely substituted furans are synthesized via a cycloisomerization process that goes through a unique metal carbene species. Both ligand structure and the nature of the leaving group are evaluated. The characteristics of the carbene intermediate can be modulated, resulting in highly selective hydrogen or silicon group migrations.
View Article and Find Full Text PDF