Polydopamine (PDA) has a wide range of applications in biomedicine due to its high biocompatibility and surface chemistry and because of the presence of many functional groups in it, enabling further modification. As a catechol-like material, it has chelation properties for various types of metal ions, including iron. Here, we developed a procedure that uses PDA as a template to grow iron structures β-FeOOH directly on its surface.
View Article and Find Full Text PDFElectric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena.
View Article and Find Full Text PDFThe atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel FeO/MnO core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope.
View Article and Find Full Text PDFIn this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from FeO/MnO core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra.
View Article and Find Full Text PDFResistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency.
View Article and Find Full Text PDFThe physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
View Article and Find Full Text PDF